Singular Integrals, Image Smoothness, and the Recovery of Texture in Image Deblurring

Total variation (TV) image deblurring is a PDE-based technique that preserves edges, but often eliminates vital small-scale information, or {\em texture}. This phenomenon reflects the fact that most natural images are not of bounded variation. The present paper reconsiders the image deblurring problem in Lipschitz spaces $\Lambda(\alpha, p, q)$, wherein a wide class of nonsmooth images can be accommodated. A new and fast FFT-based deblurring method is developed that can recover texture in cases where TV deblurring fails completely. Singular integrals, such as the Poisson kernel, are used to create an effective new image analysis tool that can calibrate the lack of smoothness in an image. It is found that a rich class of images $\in \Lambda(\alpha, 1, \infty) \cap \Lambda(\beta, 2, \infty)$, with $0.2 < \alpha, \beta < 0.7$. The Poisson kernel is then used to regularize the deblurring problem by appropriately constraining its solutions in $\Lambda(\alpha, 2, \infty)$ spaces, leading to new L2 error bounds ...

[1]  The APEX Method and Real-Time Blind Deconvolution of Scanning Electron Microscope Imagery , 2001 .

[2]  K. Yosida Fractional Powers of Infinitesimal Generators and the Analyticity of the Semi-groups Generated by Them , 1960 .

[3]  Subhasis Chaudhuri,et al.  Depth From Defocus: A Real Aperture Imaging Approach , 1999, Springer New York.

[4]  A. Carasso THE APEX METHOD IN IMAGE SHARPENING AND THE USE OF LOW EXPONENT LÉVY STABLE LAWS , 2002 .

[5]  A. Zygmund,et al.  Singular integrals and periodic functions , 1954 .

[6]  Mila Nikolova,et al.  Local Strong Homogeneity of a Regularized Estimator , 2000, SIAM J. Appl. Math..

[7]  Stanley Osher,et al.  Explicit Algorithms for a New Time Dependent Model Based on Level Set Motion for Nonlinear Deblurring and Noise Removal , 2000, SIAM J. Sci. Comput..

[8]  T. Teichmann,et al.  Harmonic Analysis and the Theory of Probability , 1957, The Mathematical Gazette.

[9]  Tony F. Chan,et al.  Mathematical Models for Local Nontexture Inpaintings , 2002, SIAM J. Appl. Math..

[10]  Ronald A. DeVore,et al.  Image compression through wavelet transform coding , 1992, IEEE Trans. Inf. Theory.

[11]  Paul L. Butzer,et al.  Fourier analysis and approximation , 1971 .

[12]  J. Cooper,et al.  SEMI‐GROUPS OF OPERATORS AND APPROXIMATION , 1969 .

[13]  A. Sandage The Hubble atlas of galaxies , 1961 .

[14]  Paul L. Butzer,et al.  Semi-groups of operators and approximation , 1967 .

[15]  M. Taibleson Lipschitz classes of functions and distributions in $E_n$ , 1963 .

[16]  E. Brigham,et al.  The fast Fourier transform , 2016, IEEE Spectrum.

[17]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[18]  K. Miller Least Squares Methods for Ill-Posed Problems with a Prescribed Bound , 1970 .

[19]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .

[20]  Stanley Osher,et al.  Total variation based image restoration with free local constraints , 1994, Proceedings of 1st International Conference on Image Processing.

[21]  Michael T. Postek,et al.  Image sharpness measurement in scanning electron microscopy—part I , 2006 .

[22]  Mila Nikolova,et al.  Minimizers of Cost-Functions Involving Nonsmooth Data-Fidelity Terms. Application to the Processing of Outliers , 2002, SIAM J. Numer. Anal..

[23]  Jack D. Gaskill,et al.  Linear systems, fourier transforms, and optics , 1978, Wiley series in pure and applied optics.

[24]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[25]  Yann Gousseau,et al.  Are Natural Images of Bounded Variation? , 2001, SIAM J. Math. Anal..

[26]  A. Stokolos,et al.  On the Rate of Almost Everywhere Convergence of Abel-Cartwright means on Lp(Rn) , 1998 .

[27]  Jacques Froment,et al.  Reconstruction of Wavelet Coefficients Using Total Variation Minimization , 2002, SIAM J. Sci. Comput..

[28]  Tony F. Chan,et al.  Total variation blind deconvolution , 1998, IEEE Trans. Image Process..

[29]  Edward L. O'Neill,et al.  Introduction to Statistical Optics , 1963 .

[30]  A. Carasso Linear and Nonlinear Image Deblurring: A Documented Study , 1999 .

[31]  Ronald A. DeVore,et al.  Classifying the smoothness of images: theory and applications to wavelet image processing , 1994, Proceedings of 1st International Conference on Image Processing.

[32]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[33]  Florin Popentiu,et al.  Iterative identification and restoration of images , 1993, Comput. Graph..

[34]  Favard classes for $n$-dimensional singular integrals , 1966 .

[35]  Tony F. Chan,et al.  High-Order Total Variation-Based Image Restoration , 2000, SIAM J. Sci. Comput..

[36]  Fadil Santosa,et al.  Recovery of Blocky Images from Noisy and Blurred Data , 1996, SIAM J. Appl. Math..

[37]  Antonin Chambolle,et al.  Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage , 1998, IEEE Trans. Image Process..

[38]  Tosio Kato,et al.  ON SUBORDINATED HOLOMORPHIC SEMIGROUPS , 1991 .