The Havriliak–Negami and Jurlewicz–Weron–Stanislavsky relaxation models revisited: memory functions based study

We provide a review of theoretical results concerning the Havriliak–Negami (HN) and the Jurlewicz–Weron–Stanislavsky (JWS) dielectric relaxation models. We derive explicit forms of functions characterizing relaxation phenomena in the time domain—the relaxation, response and probability distribution functions. We also explain how to construct and solve relevant evolution equations within these models. These equations are usually solved by using the Schwinger parametrization and the integral transforms. Instead, in this work we replace it by the powerful Efros theorem. That allows one to relate physically admissible solutions to the memory-dependent evolution equations with phenomenologically known spectral functions and, from the other side, with the subordination mechanism emerging from a stochastic analysis of processes underpinning considered relaxation phenomena. Our approach is based on a systematic analysis of the memory-dependent evolution equations. It exploits methods of integral transforms, operational calculus and special functions theory with the completely monotone and Bernstein functions. Merging analytic and stochastic methods enables us to give a complete classification of the standard functions used to describe the large class of the relaxation phenomena and to explain their properties.

[1]  K. Górska,et al.  Subordination and memory dependent kinetics in diffusion and relaxation phenomena , 2023, Fractional Calculus and Applied Analysis.

[2]  K. Górska,et al.  Non-Debye Relaxations: The Ups and Downs of the Stretched Exponential vs. Mittag–Leffler’s Matchings , 2021, Fractal and Fractional.

[3]  Aleksander Weron,et al.  Duality of fractional systems , 2021, Commun. Nonlinear Sci. Numer. Simul..

[4]  K. G'orska,et al.  Non-Debye relaxations: The characteristic exponent in the excess wings model , 2021, Commun. Nonlinear Sci. Numer. Simul..

[5]  K. Górska,et al.  Integral decomposition for the solutions of the generalized Cattaneo equation. , 2021, Physical review. E.

[6]  A. Horzela,et al.  Non-Debye relaxations: Smeared time evolution, memory effects, and the Laplace exponents , 2021, Commun. Nonlinear Sci. Numer. Simul..

[7]  E. Hernández-Balaguera,et al.  Coulostatics in bioelectrochemistry: A physical interpretation of the electrode-tissue processes from the theory of fractional calculus , 2021 .

[8]  Yuri Luchko Operational Calculus for the General Fractional Derivative and Its Applications , 2021, Fractional Calculus and Applied Analysis.

[9]  A. Horzela,et al.  Non-Debye Relaxations: Two Types of Memories and Their Stieltjes Character , 2021, Mathematics.

[10]  Yuri Luchko General Fractional Integrals and Derivatives with the Sonine Kernels , 2021, Mathematics.

[11]  I. Sokolov,et al.  On relation between generalized diffusion equations and subordination schemes , 2021, 2101.01125.

[12]  F. Mainardi,et al.  Application of the Efros Theorem to the Function Represented by the Inverse Laplace Transform of s-μ exp(-sν) , 2020, Symmetry.

[13]  A. Horzela,et al.  The Volterra type equations related to the non-Debye relaxation , 2020, Commun. Nonlinear Sci. Numer. Simul..

[14]  A. Hanyga A comment on a controversial issue: A generalized fractional derivative cannot have a regular kernel , 2020, 2003.04385.

[15]  Francesco Ciucci,et al.  The Deep-Prior Distribution of Relaxation Times , 2020 .

[16]  A. Kochubei,et al.  Growth Equation of the General Fractional Calculus , 2019, Mathematics.

[17]  I. Bazhlekov,et al.  Subordination Approach to Space-Time Fractional Diffusion , 2019, Mathematics.

[18]  K. Weron,et al.  Fractional-calculus tools applied to study the nonexponential relaxation in dielectrics , 2019, Applications in Physics, Part B.

[19]  M. Meerschaert,et al.  Inverse subordinators and time fractional equations , 2019, Basic Theory.

[20]  T. K. Pog'any,et al.  On the complete monotonicity of the three parameter generalized Mittag-Leffler function $E_{\alpha, \beta}^{\gamma}(-x)$ , 2018, 1811.10441.

[21]  Bazhlekova Emilia Subordination in a class of generalized time-fractional diffusion-wave equations , 2018, Fractional Calculus and Applied Analysis.

[22]  A. Chechkin,et al.  From continuous time random walks to the generalized diffusion equation , 2018 .

[23]  R. Hilfer Composite continuous time random walks , 2017 .

[24]  I. Sokolov,et al.  Beyond monofractional kinetics , 2017 .

[25]  Roberto Garrappa,et al.  The Prabhakar or three parameter Mittag-Leffler function: Theory and application , 2017, Commun. Nonlinear Sci. Numer. Simul..

[26]  J. L. Polo,et al.  A generalized procedure for the coulostatic method using a constant phase element , 2017 .

[27]  Aleksander Stanislavsky,et al.  Stochastic tools hidden behind the empirical dielectric relaxation laws , 2017, Reports on progress in physics. Physical Society.

[28]  G. Dattoli,et al.  The Havriliak–Negami relaxation and its relatives: the response, relaxation and probability density functions , 2016, 1611.06433.

[29]  F. Mainardi,et al.  Models of dielectric relaxation based on completely monotone functions , 2016, 1611.04028.

[30]  D. Baleanu,et al.  On the Laplace integral representation of multivariate Mittag‐Leffler functions in anomalous relaxation , 2016 .

[31]  Aleksander Stanislavsky,et al.  Atypical Case of the Dielectric Relaxation Responses and its Fractional Kinetic Equation , 2016 .

[32]  Francesco Mainardi,et al.  On complete monotonicity of the Prabhakar function and non-Debye relaxation in dielectrics , 2015, J. Comput. Phys..

[33]  Aleksander Stanislavsky,et al.  Anomalous diffusion approach to non-exponential relaxation in complex physical systems , 2015, Commun. Nonlinear Sci. Numer. Simul..

[34]  M. Meerschaert,et al.  Relaxation patterns and semi-Markov dynamics , 2015, Stochastic Processes and their Applications.

[35]  Hari M. Srivastava,et al.  Laplace type integral expressions for a certain three-parameter family of generalized Mittag-Leffler functions with applications involving complete monotonicity , 2014, J. Frankl. Inst..

[36]  F. Mainardi,et al.  Fractional models of anomalous relaxation based on the Kilbas and Saigo function , 2014, Meccanica.

[37]  Raoul R. Nigmatullin,et al.  Justification of the empirical laws of the anomalous dielectric relaxation in the framework of the memory function formalism , 2014 .

[38]  T. Simon Mittag-Leffler functions and complete monotonicity , 2013, 1312.4513.

[39]  K. Gorska,et al.  Lévy stable distributions via associated integral transform , 2012, 1202.1789.

[40]  G. Dattoli,et al.  Operator solutions for fractional Fokker-Planck equations. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Anatoly N. Kochubei,et al.  General Fractional Calculus, Evolution Equations, and Renewal Processes , 2011, 1105.1239.

[42]  F. Mainardi,et al.  Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics , 2011, 1106.1761.

[43]  J. Gilbert,et al.  The voltage-dependent electrochemical impedance spectroscopy of CoCrMo medical alloy using time-domain techniques: Generalized Cauchy-Lorentz, and KWW-Randles functions describing non-ideal interfacial behaviour , 2011 .

[44]  B. Dybiec,et al.  Subordinated diffusion and continuous time random walk asymptotics. , 2010, Chaos.

[45]  Aleksander Stanislavsky,et al.  Subordination model of anomalous diffusion leading to the two-power-law relaxation responses , 2010, 1111.3014.

[46]  K. Górska,et al.  Exact and explicit probability densities for one-sided Lévy stable distributions. , 2010, Physical review letters.

[47]  F. Mainardi Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .

[48]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[49]  Karina Weron,et al.  Overshooting and undershooting subordination scenario for fractional two-power-law relaxation responses. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  Arak M. Mathai,et al.  Mittag-Leffler Functions and Their Applications , 2009, J. Appl. Math..

[51]  J. Gilbert,et al.  The electrochemical impedance of polarized 316L stainless steel: structure-property-adsorption correlation. , 2009, Journal of biomedical materials research. Part A.

[52]  R. Gorenflo,et al.  Fractional Calculus: Integral and Differential Equations of Fractional Order , 2008, 0805.3823.

[53]  M. Berberan-Santos A luminescence decay function encompassing the stretched exponential and the compressed hyperbola , 2008, 0804.2702.

[54]  A. Hanyga,et al.  On a Mathematical Framework for the Constitutive Equations of Anisotropic Dielectric Relaxation , 2008 .

[55]  Jyotindra C. Prajapati,et al.  On a generalization of Mittag-Leffler function and its properties , 2007 .

[56]  P. Soupios,et al.  Dielectric and conductivity measurements as proxy method to monitor contamination in sandstone. , 2007, Journal of hazardous materials.

[57]  Raoul R. Nigmatullin,et al.  Recognition of the "fractional" kinetics in complex systems: Dielectric properties of fresh fruits and vegetables from 0.01 to 1.8GHz , 2006, Signal Process..

[58]  D. Johnston Stretched exponential relaxation arising from a continuous sum of exponential decays , 2006, cond-mat/0609331.

[59]  B. Valeur,et al.  Mathematical functions for the analysis of luminescence decays with underlying distributions 1. Kohlrausch decay function (stretched exponential) , 2005 .

[60]  Urs Graf,et al.  Applied Laplace Transforms and z-Transforms for Scientists and Engineers: A Computational Approach using a Mathematica Package , 2004 .

[61]  Ralf Metzler,et al.  Fractional relaxation processes and fractional rheological models for the description of a class of viscoelastic materials , 2003 .

[62]  Yuri Feldman,et al.  Non-Debye dielectric relaxation in complex materials , 2002 .

[63]  R. J. Loy,et al.  Rheological implications of completely monotone fading memory , 2002 .

[64]  R. Hilfer,et al.  Analytical representations for relaxation functions of glasses , 2002, cond-mat/0212622.

[65]  R. J. Loy,et al.  Completely monotone fading memory relaxation modulii , 2002, Bulletin of the Australian Mathematical Society.

[66]  R. Hilfer,et al.  H-function representations for stretched exponential relaxation and non-Debye susceptibilities in glassy systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  K. Miller,et al.  Completely monotonic functions , 2001 .

[68]  A. Hanyga,et al.  Wave propagation in media with singular memory , 2001 .

[69]  R. Schilling Subordination in the sense of Bochner and a related functional calculus , 1998, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[70]  K. Weron,et al.  On the Cole-Cole relaxation function and related Mittag-Leffler distribution , 1996 .

[71]  S. Havriliak Comparison of the Havriliak-Negami and stretched exponential functions , 1996 .

[72]  R. Metzler,et al.  Generalized viscoelastic models: their fractional equations with solutions , 1995 .

[73]  R. Metzler,et al.  Relaxation in filled polymers: A fractional calculus approach , 1995 .

[74]  Theo F. Nonnenmacher,et al.  Fox function representation of non-debye relaxation processes , 1993 .

[75]  T. Nonnenmacher,et al.  Fractional integral operators and Fox functions in the theory of viscoelasticity , 1991 .

[76]  Alvarez,et al.  Relationship between the time-domain Kohlrausch-Williams-Watts and frequency-domain Havriliak-Negami relaxation functions. , 1991, Physical review. B, Condensed matter.

[77]  Nicholas W. Tschoegl,et al.  The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction , 1989 .

[78]  R. Bagley,et al.  A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity , 1983 .

[79]  A. K. Jonscher,et al.  The ‘universal’ dielectric response , 1977, Nature.

[80]  J. Bertelsen,et al.  The interpretation of the general debye function as a distribution of relaxation times , 1974 .

[81]  Tokui Satō Une généralisation de l'intégrale de Lebesgue , 1970 .

[82]  W. A. Day On monotonicity of the relaxation functions of viscoelastic materials , 1970, Mathematical Proceedings of the Cambridge Philosophical Society.

[83]  Robert Zwanzig,et al.  On the identity of three generalized master equations , 1964 .

[84]  Robert Zwanzig,et al.  Memory Effects in Irreversible Thermodynamics , 1961 .

[85]  T. Teichmann,et al.  Harmonic Analysis and the Theory of Probability , 1957, The Mathematical Gazette.

[86]  S. Bochner Diffusion Equation and Stochastic Processes. , 1949, Proceedings of the National Academy of Sciences of the United States of America.

[87]  A. Wiman Über den Fundamentalsatz in der Teorie der FunktionenEa(x) , 1905 .

[88]  J. L. Polo,et al.  On the potential-step hold time when the transient-current response exhibits a Mittag-Leffler decay , 2020 .

[89]  M. Shitikova,et al.  Fractional Operator Models of Viscoelasticity , 2019, Encyclopedia of Continuum Mechanics.

[90]  Yuri Luchko,et al.  Handbook of fractional calculus with applications , 2019 .

[91]  Kerstin Vogler,et al.  Table Of Integrals Series And Products , 2016 .

[92]  Matthias Abend,et al.  Volterra Integral And Functional Equations , 2016 .

[93]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[94]  Mark M Meerschaert,et al.  INVERSE STABLE SUBORDINATORS. , 2013, Mathematical modelling of natural phenomena.

[95]  Robert S. Anderssen,et al.  Sums of Exponentials Approximations for the Kohlrausch Function , 2011 .

[96]  K. Weron,et al.  B No 5 TWO-POWER-LAW RELAXATION PROCESSES IN COMPLEX MATERIALS ∗ , 2010 .

[97]  Christian Berg,et al.  Stieltjes-Pick-Bernstein-Schoenberg and their connection to complete monotonicity , 2007 .

[98]  V. Anh,et al.  Completely monotone property of fractional Green functions , 2003 .

[99]  Mamta Mittal An Introduction To Probability Theory And Its Application , 2003 .

[100]  M. Shitikova,et al.  Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids , 1997 .

[101]  A. K. Jonscher,et al.  Universal relaxation law : a sequel to Dielectric relaxation in solids , 1996 .

[102]  Colmenero,et al.  Interconnection between frequency-domain Havriliak-Negami and time-domain Kohlrausch-Williams-Watts relaxation functions. , 1993, Physical review. B, Condensed matter.

[103]  Theo F. Nonnenmacher,et al.  Fractional relaxation equations for viscoelasticity and related phenomena , 1991 .

[104]  A. Jonscher Dielectric relaxation in solids , 1983 .

[105]  T. R. Prabhakar A SINGULAR INTEGRAL EQUATION WITH A GENERALIZED MITTAG LEFFLER FUNCTION IN THE KERNEL , 1971 .

[106]  Graham Williams,et al.  Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function , 1970 .

[107]  S. Havriliak,et al.  A complex plane representation of dielectric and mechanical relaxation processes in some polymers , 1967 .

[108]  L. Włodarski Sur une formule de Efros , 1953 .

[109]  E. C. Titchmarsh,et al.  The Laplace Transform , 1991, Heat Transfer 1.