Tumour-initiating cell-specific miR-1246 and miR-1290 expression converge to promote non-small cell lung cancer progression

[1]  P. Hammerman,et al.  Non-small-cell lung cancers: a heterogeneous set of diseases , 2015, Nature Reviews Cancer.

[2]  F. Slack,et al.  Combinatorial Action of MicroRNAs let-7 and miR-34 Effectively Synergizes with Erlotinib to Suppress Non-small Cell Lung Cancer Cell Proliferation , 2015, Cell cycle.

[3]  T. Pestell,et al.  MicroRNAs and cancer stem cells: the sword and the shield , 2014, Oncogene.

[4]  Christopher J. Cheng,et al.  MicroRNA silencing for cancer therapy targeted to the tumor microenvironment , 2014, Nature.

[5]  G. Calin,et al.  MicroRNAome genome: A treasure for cancer diagnosis and therapy , 2014, CA: a cancer journal for clinicians.

[6]  Daniel G. Anderson,et al.  Small RNA combination therapy for lung cancer , 2014, Proceedings of the National Academy of Sciences.

[7]  S. Heiland,et al.  Targeting self-renewal in high-grade brain tumors leads to loss of brain tumor stem cells and prolonged survival. , 2014, Cell stem cell.

[8]  S. Lawler,et al.  MicroRNAs in cancer: biomarkers, functions and therapy. , 2014, Trends in molecular medicine.

[9]  F. Slack,et al.  A combinatorial microRNA therapeutics approach to suppressing non-small cell lung cancer , 2014, Oncogene.

[10]  H. Ng,et al.  Sox2: masterminding the root of cancer. , 2014, Cancer cell.

[11]  Steven J. M. Jones,et al.  Quiescent sox2(+) cells drive hierarchical growth and relapse in sonic hedgehog subgroup medulloblastoma. , 2014, Cancer cell.

[12]  S. Rorive,et al.  SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma , 2014, Nature.

[13]  Joseph Rosenbluh,et al.  KRAS and YAP1 Converge to Regulate EMT and Tumor Survival , 2014, Cell.

[14]  M. Bianchini,et al.  Metallothionein 1G and Zinc Sensitize Human Colorectal Cancer Cells to Chemotherapy , 2014, Molecular Cancer Therapeutics.

[15]  M. Biffoni,et al.  CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. , 2014, Cell stem cell.

[16]  G. Calin,et al.  Clinical relevance of circulating cell-free microRNAs in cancer , 2014, Nature Reviews Clinical Oncology.

[17]  Chi-Hung Lin,et al.  MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells , 2014, Nature Cell Biology.

[18]  Xu Zhou,et al.  Studies on microRNAs that are correlated with the cancer stem cells in chronic myeloid leukemia , 2014, Molecular and Cellular Biochemistry.

[19]  R. Weinberg,et al.  Protein kinase C α is a central signaling node and therapeutic target for breast cancer stem cells. , 2013, Cancer cell.

[20]  G. Liang,et al.  Expression of metallothionein and Nrf2 pathway genes in lung cancer and cancer-surrounding tissues , 2013, World Journal of Surgical Oncology.

[21]  M. Hung,et al.  Pharmacological Inactivation of Skp2 SCF Ubiquitin Ligase Restricts Cancer Stem Cell Traits and Cancer Progression , 2013, Cell.

[22]  Ugo Ala,et al.  MicroRNA-Antagonism Regulates Breast Cancer Stemness and Metastasis via TET-Family-Dependent Chromatin Remodeling , 2013, Cell.

[23]  P. Pandolfi,et al.  The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation. , 2013, Cell stem cell.

[24]  J. Lieberman,et al.  Noncoding RNAs and Cancer , 2013, Cell.

[25]  P. Dzięgiel,et al.  Expression of metallothionein-III in patients with non-small cell lung cancer. , 2013, Anticancer research.

[26]  Quentin Geissmann,et al.  OpenCFU, a New Free and Open-Source Software to Count Cell Colonies and Other Circular Objects , 2012, PloS one.

[27]  H. Johnsen,et al.  Cancer stem cell definitions and terminology: the devil is in the details , 2012, Nature Reviews Cancer.

[28]  Funda Meric-Bernstam,et al.  Overcoming implementation challenges of personalized cancer therapy , 2012, Nature Reviews Clinical Oncology.

[29]  Ming Sun,et al.  MicroRNA-196a promotes non-small cell lung cancer cell proliferation and invasion through targeting HOXA5 , 2012, BMC Cancer.

[30]  S. Lowe,et al.  The microcosmos of cancer , 2012, Nature.

[31]  P. Robson,et al.  Modular Genetic Control of Sexually Dimorphic Behaviors , 2012, Cell.

[32]  M. Roberti,et al.  Metallothionein expression in colorectal cancer: relevance of different isoforms for tumor progression and patient survival. , 2012, Human pathology.

[33]  Peter Dirks,et al.  Cancer stem cells: an evolving concept , 2012, Nature Reviews Cancer.

[34]  F. Slack,et al.  MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy , 2011, Nature Reviews Cancer.

[35]  M. Koch,et al.  Distinct types of tumor-initiating cells form human colon cancer tumors and metastases. , 2011, Cell stem cell.

[36]  Yang Liu,et al.  Targeting HIF1α eliminates cancer stem cells in hematological malignancies. , 2011, Cell stem cell.

[37]  I. Ng,et al.  miR-130b Promotes CD133(+) liver tumor-initiating cell growth and self-renewal via tumor protein 53-induced nuclear protein 1. , 2010, Cell stem cell.

[38]  Eckart Meese,et al.  High-throughput miRNA profiling of human melanoma blood samples , 2010, BMC Cancer.

[39]  Frank Speleman,et al.  miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis , 2010, Nature Cell Biology.

[40]  A. Naba,et al.  Inhibition of endothelial cell chemotaxis toward FGF-2 by gefitinib associates with downregulation of Fes activity. , 2009, International journal of oncology.

[41]  M. Kanda,et al.  Detection of metallothionein 1G as a methylated tumor suppressor gene in human hepatocellular carcinoma using a novel method of double combination array analysis. , 2009, International journal of oncology.

[42]  Eric S. Lander,et al.  Identification of Selective Inhibitors of Cancer Stem Cells by High-Throughput Screening , 2009, Cell.

[43]  X. Chen,et al.  Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases , 2008, Cell Research.

[44]  S. Lippman,et al.  Lung cancer. , 2008, The New England journal of medicine.

[45]  Daniel B. Martin,et al.  Circulating microRNAs as stable blood-based markers for cancer detection , 2008, Proceedings of the National Academy of Sciences.

[46]  Cicek Gercel-Taylor,et al.  MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. , 2008, Gynecologic oncology.

[47]  J. Mendell miRiad Roles for the miR-17-92 Cluster in Development and Disease , 2008, Cell.

[48]  S. Kauppinen,et al.  LNA-mediated microRNA silencing in non-human primates , 2008, Nature.

[49]  Manuela Gariboldi,et al.  Metallothionein 1G acts as an oncosupressor in papillary thyroid carcinoma , 2008, Laboratory Investigation.

[50]  Rudolf Jaenisch,et al.  Targeted Deletion Reveals Essential and Overlapping Functions of the miR-17∼92 Family of miRNA Clusters , 2008, Cell.

[51]  J. Lieberman,et al.  let-7 Regulates Self Renewal and Tumorigenicity of Breast Cancer Cells , 2007, Cell.

[52]  J. M. Thomson,et al.  Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. , 2007, Developmental biology.

[53]  C. Morrison,et al.  MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B , 2007, Proceedings of the National Academy of Sciences.

[54]  P. M. Nissom,et al.  A novel normalization method for effective removal of systematic variation in microarray data , 2006, Nucleic acids research.

[55]  Y. Yatabe,et al.  A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. , 2005, Cancer research.

[56]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[57]  F. Slack,et al.  RAS Is Regulated by the let-7 MicroRNA Family , 2005, Cell.

[58]  M. Satoh [Toxicological significance of metallothionein on environmental harmful factors: verification and suggestions from a metallothionein-I/II null mouse model study]. , 2004, Nihon eiseigaku zasshi. Japanese journal of hygiene.

[59]  Y. Yatabe,et al.  Reduced Expression of the let-7 MicroRNAs in Human Lung Cancers in Association with Shortened Postoperative Survival , 2004, Cancer Research.

[60]  C. Tohyama,et al.  Metallothionein deficiency enhances skin carcinogenesis induced by 7,12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate in metallothionein-null mice. , 2003, Carcinogenesis.

[61]  W. Janzen,et al.  High Throughput Screening , 2002, Methods in Molecular Biology.

[62]  E. Ioachim,et al.  Prognostic evaluation of metallothionein expression in human colorectal neoplasms. , 1999, Journal of clinical pathology.

[63]  Tzong-Shiue Yu,et al.  A restricted cell population propagates glioblastoma growth after chemotherapy , 2012 .

[64]  S.J. Kuzminski Devil in the details , 2011, Nature.

[65]  Irving L. Weissman,et al.  Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271 , 2011, Nature.

[66]  Hansjuerg Alder,et al.  The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. , 2009, Gynecologic oncology.

[67]  L. Schwartz,et al.  New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). , 2009, European journal of cancer.

[68]  E. Pils A Sword and a Shield , 2009 .

[69]  J. Massagué,et al.  Beyond tumorigenesis: cancer stem cells in metastasis , 2007, Cell Research.

[70]  H. Hansen,et al.  Lung cancer. , 1990, Cancer chemotherapy and biological response modifiers.