Parallel algorithm for calculation of the exact partition function of a lattice polymer
暂无分享,去创建一个
[1] Stanley,et al. Universality classes of the theta and theta ' points. , 1989, Physical review. B, Condensed matter.
[2] T. Ishinabe. Critical exponents for surface interacting self‐avoiding lattice walks. II. The square lattice , 1982 .
[3] P. Gennes. Scaling Concepts in Polymer Physics , 1979 .
[4] Michael J. Stephen,et al. Collapse of a polymer chain , 1975 .
[5] T Ishinabe,et al. Examination of the theta -point from exact enumeration of self-avoiding walks , 1985 .
[6] A. Ravve,et al. Principles of Polymer Chemistry , 1995 .
[7] P. G. de Gennes,et al. Collapse of a polymer chain in poor solvents , 1975 .
[8] Chai-Yu Lin,et al. Partition function zeros of the two-dimensional HP model for protein folding , 2005 .
[9] Iwan Jensen. Enumeration of self-avoiding walks on the square lattice , 2004 .
[10] B. Derrida,et al. Collapse of two-dimensional linear polymers: a transfer matrix calculation of the exponent νt , 1985 .
[11] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[12] A. A. Caparica,et al. Two-dimensional lattice polymers: Adaptive windows simulations , 2008, Comput. Phys. Commun..
[13] William H. Press,et al. Numerical Recipes in C, 2nd Edition , 1992 .
[14] Ian G. Enting,et al. Generating functions for enumerating self-avoiding rings on the square lattice , 1980 .
[15] K. Dill,et al. Polymer principles in protein structure and stability. , 1991, Annual review of biophysics and biophysical chemistry.
[16] Ericka Stricklin-Parker,et al. Ann , 2005 .
[17] T. Ishinabe. Critical exponents for surface interacting self‐avoiding lattice walks. III. Infinite systems , 1984 .
[18] J. Stoer,et al. Fehlerabschätzungen und Extrapolation mit rationalen Funktionen bei Verfahren vom Richardson-Typus , 1964 .
[19] P. Grassberger,et al. Simulations of θ-Polymers in 2 Dimensions , 1995 .
[20] Flavio Seno,et al. θ point of a linear polymer in 2 dimensions: a renormalization group analysis of Monte Carlo enumerations , 1988 .
[21] Andrew R. Conway,et al. Square Lattice Self-Avoiding Walks and Polygons , 2001 .
[22] H. Meirovitch,et al. The collapse transition of self-avoiding walks on a square lattice: A computer simulation study , 1989 .
[23] Saleur,et al. Exact tricritical exponents for polymers at the FTHETA point in two dimensions. , 1987, Physical review letters.
[24] J. Viñals,et al. Collapse transition of a hydrophobic self-avoiding random walk in a coarse-grained model solvent. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.
[25] Artur Baumgärtner,et al. Collapse of a polymer : evidence for tricritical behaviour in two dimensions , 1982 .
[26] S. Buldyrev,et al. Monte-Carlo simulation of the collapse transition of a two-dimensional polymer , 1985 .
[27] Karl F. Freed,et al. Theta point (‘‘tricritical’’) region behavior for a polymer chain: Transition to collapse , 1984 .
[28] K. Freed,et al. Conformational space renormalisation group theory of 'tricritical' (theta point) exponents for a polymer chain , 1984 .
[29] Z. Ou-Yang,et al. Simulating the collapse transition of a two-dimensional semiflexible lattice polymer. , 2008, The Journal of chemical physics.
[30] Jae Hwan Lee,et al. Exact partition function zeros and the collapse transition of a two-dimensional lattice polymer. , 2010, The Journal of chemical physics.
[31] Paul J. Flory,et al. The Configuration of Real Polymer Chains , 1949 .
[32] Hubert Saleur,et al. Collapse of two-dimensional linear polymers , 1986 .
[33] P. Grassberger. Recursive sampling of random walks: self-avoiding walks in disordered media , 1993 .
[34] Vladimir Privman,et al. Study of the θ point by enumeration of self-avoiding walks on the triangular lattice , 1986 .
[35] Exact Partition Function Zeros of Two-Dimensional Lattice Polymers , 2004 .
[36] William H. Press,et al. Numerical recipes in C , 2002 .
[37] P. G. de Gennes,et al. Collapse of a flexible polymer chain II , 1978 .