Parallel algorithm for calculation of the exact partition function of a lattice polymer

We develop a parallel algorithm that calculates the exact partition function of a lattice polymer, by enumerating the number of conformations for each energy level. An efficient parallelization of the calculation is achieved by classifying the conformations according to the shape of the box spanned by a conformation, and enumerating only those in a given box at a time. The calculation time for each box is reduced by preventing the conformations related by symmetries from being generated more than once. The algorithm is applied to study the collapse transition of a lattice homopolymer on a square lattice, by calculating the specific heat for chain lengths up to 36.

[1]  Stanley,et al.  Universality classes of the theta and theta ' points. , 1989, Physical review. B, Condensed matter.

[2]  T. Ishinabe Critical exponents for surface interacting self‐avoiding lattice walks. II. The square lattice , 1982 .

[3]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[4]  Michael J. Stephen,et al.  Collapse of a polymer chain , 1975 .

[5]  T Ishinabe,et al.  Examination of the theta -point from exact enumeration of self-avoiding walks , 1985 .

[6]  A. Ravve,et al.  Principles of Polymer Chemistry , 1995 .

[7]  P. G. de Gennes,et al.  Collapse of a polymer chain in poor solvents , 1975 .

[8]  Chai-Yu Lin,et al.  Partition function zeros of the two-dimensional HP model for protein folding , 2005 .

[9]  Iwan Jensen Enumeration of self-avoiding walks on the square lattice , 2004 .

[10]  B. Derrida,et al.  Collapse of two-dimensional linear polymers: a transfer matrix calculation of the exponent νt , 1985 .

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  A. A. Caparica,et al.  Two-dimensional lattice polymers: Adaptive windows simulations , 2008, Comput. Phys. Commun..

[13]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[14]  Ian G. Enting,et al.  Generating functions for enumerating self-avoiding rings on the square lattice , 1980 .

[15]  K. Dill,et al.  Polymer principles in protein structure and stability. , 1991, Annual review of biophysics and biophysical chemistry.

[16]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[17]  T. Ishinabe Critical exponents for surface interacting self‐avoiding lattice walks. III. Infinite systems , 1984 .

[18]  J. Stoer,et al.  Fehlerabschätzungen und Extrapolation mit rationalen Funktionen bei Verfahren vom Richardson-Typus , 1964 .

[19]  P. Grassberger,et al.  Simulations of θ-Polymers in 2 Dimensions , 1995 .

[20]  Flavio Seno,et al.  θ point of a linear polymer in 2 dimensions: a renormalization group analysis of Monte Carlo enumerations , 1988 .

[21]  Andrew R. Conway,et al.  Square Lattice Self-Avoiding Walks and Polygons , 2001 .

[22]  H. Meirovitch,et al.  The collapse transition of self-avoiding walks on a square lattice: A computer simulation study , 1989 .

[23]  Saleur,et al.  Exact tricritical exponents for polymers at the FTHETA point in two dimensions. , 1987, Physical review letters.

[24]  J. Viñals,et al.  Collapse transition of a hydrophobic self-avoiding random walk in a coarse-grained model solvent. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Artur Baumgärtner,et al.  Collapse of a polymer : evidence for tricritical behaviour in two dimensions , 1982 .

[26]  S. Buldyrev,et al.  Monte-Carlo simulation of the collapse transition of a two-dimensional polymer , 1985 .

[27]  Karl F. Freed,et al.  Theta point (‘‘tricritical’’) region behavior for a polymer chain: Transition to collapse , 1984 .

[28]  K. Freed,et al.  Conformational space renormalisation group theory of 'tricritical' (theta point) exponents for a polymer chain , 1984 .

[29]  Z. Ou-Yang,et al.  Simulating the collapse transition of a two-dimensional semiflexible lattice polymer. , 2008, The Journal of chemical physics.

[30]  Jae Hwan Lee,et al.  Exact partition function zeros and the collapse transition of a two-dimensional lattice polymer. , 2010, The Journal of chemical physics.

[31]  Paul J. Flory,et al.  The Configuration of Real Polymer Chains , 1949 .

[32]  Hubert Saleur,et al.  Collapse of two-dimensional linear polymers , 1986 .

[33]  P. Grassberger Recursive sampling of random walks: self-avoiding walks in disordered media , 1993 .

[34]  Vladimir Privman,et al.  Study of the θ point by enumeration of self-avoiding walks on the triangular lattice , 1986 .

[35]  Exact Partition Function Zeros of Two-Dimensional Lattice Polymers , 2004 .

[36]  William H. Press,et al.  Numerical recipes in C , 2002 .

[37]  P. G. de Gennes,et al.  Collapse of a flexible polymer chain II , 1978 .