Variational Quantum Generators: Generative Adversarial Quantum Machine Learning for Continuous Distributions

We propose a hybrid quantum-classical approach to model continuous classical probability distributions using a variational quantum circuit. The architecture of the variational circuit consists of two parts: a quantum circuit employed to encode a classical random variable into a quantum state, called the quantum encoder, and a variational circuit whose parameters are optimized to mimic a target probability distribution. Samples are generated by measuring the expectation values of a set of operators chosen at the beginning of the calculation. Our quantum generator can be complemented with a classical function, such as a neural network, as part of the classical post-processing. We demonstrate the application of the quantum variational generator using a generative adversarial learning approach, where the quantum generator is trained via its interaction with a discriminator model that compares the generated samples with those coming from the real data distribution. We show that our quantum generator is able to learn target probability distributions using either a classical neural network or a variational quantum circuit as the discriminator. Our implementation takes advantage of automatic differentiation tools to perform the optimization of the variational circuits employed. The framework presented here for the design and implementation of variational quantum generators can serve as a blueprint for designing hybrid quantum-classical architectures for other machine learning tasks on near-term quantum devices.

[1]  Christoph Dankert,et al.  Exact and approximate unitary 2-designs and their application to fidelity estimation , 2009 .

[2]  Alán Aspuru-Guzik,et al.  Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models , 2017, ArXiv.

[3]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[4]  Lei Wang,et al.  Differentiable Learning of Quantum Circuit Born Machine , 2018, Physical Review A.

[5]  Ryan Babbush,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[6]  C. Brabec,et al.  A Bayesian Approach to Predict Solubility Parameters , 2018, Advanced Theory and Simulations.

[7]  Alán Aspuru-Guzik,et al.  ORGANIC (1).pdf , 2017 .

[8]  Jacob biamonte,et al.  Quantum machine learning , 2016, Nature.

[9]  M. Hastings,et al.  Progress towards practical quantum variational algorithms , 2015, 1507.08969.

[10]  Robert Wille,et al.  Logic Synthesis for Quantum State Generation , 2016, 2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL).

[11]  Matthias Troyer,et al.  ProjectQ: An Open Source Software Framework for Quantum Computing , 2016, ArXiv.

[12]  Kristan Temme,et al.  Error Mitigation for Short-Depth Quantum Circuits. , 2016, Physical review letters.

[13]  Yudong Cao,et al.  A framework for algorithm deployment on cloud-based quantum computers , 2018, 1810.10576.

[14]  Alán Aspuru-Guzik,et al.  Inverse molecular design using machine learning: Generative models for matter engineering , 2018, Science.

[15]  Alán Aspuru-Guzik,et al.  The Matter Simulation (R)evolution , 2018, ACS central science.

[16]  Peter D. Johnson,et al.  QVECTOR: an algorithm for device-tailored quantum error correction , 2017, 1711.02249.

[17]  Hariharan Narayanan,et al.  Efficient Sampling from Time-Varying Log-Concave Distributions , 2013, J. Mach. Learn. Res..

[18]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[19]  Alán Aspuru-Guzik,et al.  Quantum autoencoders for efficient compression of quantum data , 2016, 1612.02806.

[20]  Alán Aspuru-Guzik,et al.  Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules , 2016, ACS central science.

[21]  W. Marsden I and J , 2012 .

[22]  Robert Gardner,et al.  Quantum generalisation of feedforward neural networks , 2016, npj Quantum Information.

[23]  Keisuke Fujii,et al.  Quantum circuit learning , 2018, Physical Review A.

[24]  Alán Aspuru-Guzik,et al.  Quantum Chemistry in the Age of Quantum Computing. , 2018, Chemical reviews.

[25]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[26]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[27]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[28]  Leslie G. Valiant,et al.  Quantum Circuits That Can Be Simulated Classically in Polynomial Time , 2002, SIAM J. Comput..

[29]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[30]  Rupak Biswas,et al.  Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers , 2017, Quantum Science and Technology.

[31]  Nathan Killoran,et al.  Quantum generative adversarial networks , 2018, Physical Review A.

[32]  James C. Spall,et al.  A one-measurement form of simultaneous perturbation stochastic approximation , 1997, Autom..

[33]  K. K. Nambiar,et al.  Foundations of Computer Science , 2001, Lecture Notes in Computer Science.

[34]  J. McClean,et al.  Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz , 2017, Quantum Science and Technology.

[35]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[36]  Seth Lloyd,et al.  Quantum Generative Adversarial Learning. , 2018, Physical review letters.

[37]  Sergey Nikolenko,et al.  druGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico. , 2017, Molecular pharmaceutics.

[38]  Tom White,et al.  Generative Adversarial Networks: An Overview , 2017, IEEE Signal Processing Magazine.

[39]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[40]  Hallie Preskill The Value of Lived Experience , 2018 .

[41]  Andrei N. Soklakov,et al.  Efficient state preparation for a register of quantum bits , 2004 .

[42]  K. Birgitta Whaley,et al.  Towards quantum machine learning with tensor networks , 2018, Quantum Science and Technology.

[43]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[44]  Alejandro Perdomo-Ortiz,et al.  A generative modeling approach for benchmarking and training shallow quantum circuits , 2018, npj Quantum Information.

[45]  Richard D. Neidinger,et al.  Introduction to Automatic Differentiation and MATLAB Object-Oriented Programming , 2010, SIAM Rev..

[46]  vCaslav Brukner,et al.  Quantum-state preparation with universal gate decompositions , 2010, 1003.5760.

[47]  Simone Severini,et al.  Hierarchical quantum classifiers , 2018, npj Quantum Information.

[48]  James C. Spall,et al.  Adaptive stochastic approximation by the simultaneous perturbation method , 2000, IEEE Trans. Autom. Control..