Variability in nanoscale CMOS technology

Moore’s Law technology scaling has improved VLSI performance by five orders of magnitude in the last four decades. As advanced technologies continue the pursuit of Moore’s Law, a variety of challenges will need to be overcome. One of these challenges is management of process variation. This paper discusses the importance of process variation in modern CMOS transistor technology, reviews front-end variation sources, presents device and circuit variation measurement techniques (including circuit and SRAM data from the 32 nm node), and compares recent intrinsic transistor variation performance from the literature.

[1]  S. De Gendt,et al.  Estimation of fixed charge densities in hafnium-silicate gate dielectrics , 2006, IEEE Transactions on Electron Devices.

[2]  O. Rozeau,et al.  High immunity to threshold voltage variability in undoped ultra-thin FDSOI MOSFETs and its physical understanding , 2008, 2008 IEEE International Electron Devices Meeting.

[3]  T. Tanaka,et al.  Vth fluctuation induced by statistical variation of pocket dopant profile , 2000 .

[4]  K. Endo,et al.  On the gate-stack origin threshold voltage variability in scaled FinFETs and multi-FinFETs , 2010, 2010 Symposium on VLSI Technology.

[5]  Hongfa Luan,et al.  On Oxygen Deficiency and Fast Transient Charge-Trapping Effects in High-$k$ Dielectrics , 2006, IEEE Electron Device Letters.

[6]  Kelin J. Kuhn,et al.  CMOS transistor scaling past 32nm and implications on variation , 2010, 2010 IEEE/SEMI Advanced Semiconductor Manufacturing Conference (ASMC).

[7]  P. Stolk,et al.  Modeling statistical dopant fluctuations in MOS transistors , 1998 .

[8]  M.J.M. Pelgrom,et al.  Matching properties of MOS transistors , 1989 .

[9]  J. Steigerwald Chemical mechanical polish: The enabling technology , 2008, 2008 IEEE International Electron Devices Meeting.

[10]  S. Uppal,et al.  Modeling of the Threshold Voltage in Strained $\hbox{Si/Si}_{1 - x} \hbox{Ge}_{x}/\hbox{Si}_{1 - y}\hbox{Ge}_{y}(x \geq y)$ CMOS Architectures , 2007, IEEE Transactions on Electron Devices.

[11]  S. Aur,et al.  Comparative evaluation of gap-fill dielectrics in shallow trench isolation for sub-0.25 /spl mu/m technologies , 1996, International Electron Devices Meeting. Technical Digest.

[12]  J. Jopling,et al.  High performance 32nm logic technology featuring 2nd generation high-k + metal gate transistors , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[13]  Y. Nishi,et al.  Physical model of the impact of metal grain work function variability on emerging dual metal gate MOSFETs and its implication for SRAM reliability , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[14]  T. Ono,et al.  Limit of gate oxide thickness scaling in MOSFETs due to apparent threshold voltage fluctuation induced by tunnel leakage current , 2001 .

[15]  H. Kimura,et al.  RTA-Driven Intra-Die Variations in Stage Delay, and Parametric Sensitivities for 65nm Technology , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[16]  A. Asenov,et al.  Poly-Si-Gate-Related Variability in Decananometer MOSFETs With Conventional Architecture , 2007, IEEE Transactions on Electron Devices.

[17]  Kelin Kuhn,et al.  Managing Process Variation in Intel’s 45nm CMOS Technology , 2008 .

[18]  A. Toffoli,et al.  Low leakage and low variability Ultra-Thin Body and Buried Oxide (UT2B) SOI technology for 20nm low power CMOS and beyond , 2010, 2010 Symposium on VLSI Technology.

[19]  A. Asenov,et al.  Intrinsic parameter fluctuations in decananometer MOSFETs introduced by gate line edge roughness , 2003 .

[20]  T. Hiramoto,et al.  A new methodology for evaluating VT variability considering dopant depth profile , 2006, 2009 Symposium on VLSI Technology.

[21]  Tetsu Tanaka,et al.  V/sub th/ fluctuation induced by statistical variation of pocket dopant profile , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[22]  Borivoje Nikolic,et al.  Measurement and Analysis of Variability in 45 nm Strained-Si CMOS Technology , 2009, IEEE Journal of Solid-State Circuits.

[23]  Sarah H. Olsen,et al.  Modeling of the Threshold Voltage in Strained , 2007 .

[24]  Luigi Capodieci From optical proximity correction to lithography-driven physical design (1996-2006): 10 years of resolution enhancement technology and the roadmap enablers for the next decade , 2006, SPIE Advanced Lithography.

[25]  T. Fukai,et al.  Understanding Random Threshold Voltage Fluctuation by Comparing Multiple Fabs and Technologies , 2007, 2007 IEEE International Electron Devices Meeting.

[26]  E. Seevinck,et al.  Static-noise margin analysis of MOS SRAM cells , 1987 .

[27]  Ying Zhang,et al.  A 4.0 GHz 291Mb voltage-scalable SRAM design in 32nm high-κ metal-gate CMOS with integrated power management , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[28]  Marcel J. M. Pelgrom,et al.  Matching properties of MOS transistors , 1989 .

[29]  A. Toriumi,et al.  Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFET's , 1994 .

[30]  J. Bonnouvrier,et al.  Competitive and cost effective high-k based 28nm CMOS technology for low power applications , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[31]  A. Asenov Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 /spl mu/m MOSFET's: A 3-D "atomistic" simulation study , 1998 .

[32]  M. D. Giles,et al.  Process Technology Variation , 2011, IEEE Transactions on Electron Devices.