Thermal effects in the ultrafast photoinduced electron transfer from a molecular donor anchored to a semiconductor acceptor

A nonadiabatic molecular dynamics (MD) simulation of the photoin- duced electron transfer (ET) from a molecular electron donor to the TiO 2 semicon- ductor acceptor is carried out in a microcanonical ensemble with an average tem- perature of 350 K. The electronic structure of the dye-semiconductor system and the adiabatic dynamics are simulated by ab initio MD, while the nonadiabatic (NA) effects are incorporated by a quantum-classical mean-field approach. The ET dy- namics are driven by thermal fluctuations that dominate ionic motions at the simu- lated temperature. The ground and excited state ion dynamics are similar; therefore, the change in the quantum force due to the electronic photoexcitation can be neglected, and the final analysis is greatly simplified. The simulated ET occurs on a 5-fs timescale, in agreement with recent ultrafast experimental data. Vibrational motions of the chromophore ring carbons induce an oscillation of the photoexcited state energy, resulting in a bimodal distribution of the initial conditions for ET. At low energies the photoexcited state is localized primarily on the chromophore, while at high energies the photoexcited state is substantially delocalized into the first 3 surface layers of the TiO 2 surface. Thermally driven adiabatic transfer is the domi- nant ET mechanism. Compared to the earlier simulation at 50 K, the rate of NA transfer at 350 K remains almost unchanged, whereas the rate of adiabatic ET increases substantially.

[1]  M. Ratner,et al.  Current–voltage characteristics of tunneling molecular junctions for off-resonance injection , 2001 .

[2]  U. Bach,et al.  Comment on \"Measurement of Ultrafast Photoinduced Electron Transfer from Chemically Anchored Ru-Dye Molecules into Empty Electronic States in a Colloidal Anatase TiO2 Film\" , 1998 .

[3]  D. Klug,et al.  Transient luminescence studies of electron injection in dye sensitised nanocrystalline TiO2 films , 2001 .

[4]  John B. Asbury,et al.  Ultrafast Electron Transfer Dynamics from Molecular Adsorbates to Semiconductor Nanocrystalline Thin Films , 2001 .

[5]  Qing Dai,et al.  Unusually efficient photosensitization of nanocrystalline TiO2 films by pomegranate pigments in aqueous medium , 2002 .

[6]  M. Tuckerman,et al.  IN CLASSICAL AND QUANTUM DYNAMICS IN CONDENSED PHASE SIMULATIONS , 1998 .

[7]  T. Elsaesser,et al.  Vibrational and Vibronic Relaxation of Large Polyatomic Molecules in Liquids , 1991 .

[8]  M. Ratner,et al.  Injection Time in the Metaloxide−Molecule Interface Calculated within the Tight-Binding Model , 2000 .

[9]  J. Durrant Modulating interfacial electron transfer dynamics in dye sensitised nanocrystalline metal oxide films , 2002 .

[10]  Arthur J. Frank,et al.  CHARGE RECOMBINATION IN DYE-SENSITIZED NANOCRYSTALLINE TIO2 SOLAR CELLS , 1997 .

[11]  P. Liska,et al.  Engineering of efficient panchromatic sensitizers for nanocrystalline TiO(2)-based solar cells. , 2001, Journal of the American Chemical Society.

[12]  J. Tully Molecular dynamics with electronic transitions , 1990 .

[13]  John B. Asbury,et al.  Dynamics of Electron Injection in Nanocrystalline Titanium Dioxide Films Sensitized with (Ru(4,4'-dicarboxy-2,2'-bipyridine)2(NCS)2) by Infrared Transient Absorption , 1998 .

[14]  D. Coker Computer Simulation Methods for Nonadiabatic Dynamics in Condensed Systems , 1993 .

[15]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[16]  J. Tully Mixed quantum-classical dynamics:. mean-field and surface-hopping , 1998 .

[17]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[18]  William Stier,et al.  Nonadiabatic Molecular Dynamics Simulation of Light-Induced Electron Transfer from an Anchored Molecular Electron Donor to a Semiconductor Acceptor † , 2002 .

[19]  T. Lian,et al.  Effect of Trap States on Interfacial Electron Transfer between Molecular Absorbates and Semiconductor Nanoparticles , 2002 .

[20]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[21]  John B. Asbury,et al.  DIRECT OBSERVATION OF ULTRAFAST ELECTRON INJECTION FROM COUMARIN 343 TO TIO2 NANOPARTICLES BY FEMTOSECOND INFRARED SPECTROSCOPY , 1998 .

[22]  Prezhdo Quantum anti-zeno acceleration of a chemical reaction , 2000, Physical review letters.

[23]  Y. Pereverzev,et al.  Quantized Hamilton dynamics , 2000 .

[24]  Vladimiro Mujica,et al.  The injecting energy at molecule/metal interfaces: Implications for conductance of molecular junctions from an ab initio molecular description , 1999 .

[25]  I. B. Martini,et al.  Effect of Structure on Electron Transfer Reactions between Anthracene Dyes and TiO2 Nanoparticles , 1998 .

[26]  T. Lian,et al.  Bridge Length-Dependent Ultrafast Electron Transfer from Re Polypyridyl Complexes to Nanocrystalline TiO2 Thin Films Studied by Femtosecond Infrared Spectroscopy , 2000 .

[27]  Jani Kallioinen,et al.  Photoinduced ultrafast dye-to-semiconductor electron injection from nonthermalized and thermalized donor states. , 2002, Journal of the American Chemical Society.

[28]  Y. Gao,et al.  On the theory of electron transfer reactions at semiconductor electrode'liquid interfaces , 2000 .

[29]  Michael F. Herman Dynamics by Semiclassical Methods , 1994 .

[30]  Greg P. Smestad,et al.  Ultrafast Electron Injection: Implications for a Photoelectrochemical Cell Utilizing an Anthocyanin Dye-Sensitized TiO2 Nanocrystalline Electrode , 1997 .

[31]  G. Voth,et al.  A theory for electron transfer between an electrode and a multilevel acceptor/donor species in an electrolyte solution , 1998 .

[32]  A. Nozik,et al.  Study of electron transfer at semiconductor-liquid interfaces addressing the full system electronic structure , 1996 .

[33]  John B. Asbury,et al.  Femtosecond IR Study of Excited-State Relaxation and Electron-Injection Dynamics of Ru(dcbpy)2(NCS)2 in Solution and on Nanocrystalline TiO2 and Al2O3 Thin Films , 1999 .

[34]  P. Rossky,et al.  Mean-field molecular dynamics with surface hopping , 1997 .

[35]  Jacques-E. Moser,et al.  The Role of Surface States in the Ultrafast Photoinduced Electron Transfer from Sensitizing Dye Molecules to Semiconductor Colloids , 2000 .

[36]  Anders Hagfeldt,et al.  PES Studies of Ru(dcbpyH2)2(NCS)2 Adsorption on Nanostructured ZnO for Solar Cell Applications , 2002 .

[37]  Jeremy E. Monat,et al.  Ground- and Excited-State Electronic Structures of the Solar Cell Sensitizer Bis(4,4'-dicarboxylato-2,2'-bipyridine)bis(isothiocyanato)ruthenium(II) , 2002 .

[38]  August W. Calhoun,et al.  ISOTOPE EFFECTS IN ELECTRON TRANSFER ACROSS THE ELECTRODE-ELECTROLYTE INTERFACE : A MEASURE OF SOLVENT MODE QUANTIZATION , 1998 .

[39]  O. Prezhdo Classical mapping for second-order quantized Hamiltonian dynamics , 2002 .

[40]  S. Ramakrishna,et al.  Experimental fingerprints of vibrational wave-packet motion during ultrafast heterogeneous electron transfer. , 2001 .

[41]  Jacques-E. Moser,et al.  Real-time observation of photoinduced adiabatic electron transfer in strongly coupled dye/semiconductor colloidal systems with a 6 fs time constant , 2002 .

[42]  J. Durrant,et al.  Electron Transfer Dynamics in Dye Sensitized Nanocrystalline Solar Cells Using a Polymer Electrolyte , 2001 .

[43]  R. D McConnell,et al.  Assessment of the dye-sensitized solar cell , 2002 .

[44]  M. Graetzel,et al.  Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins , 1993 .

[45]  Gerald J. Meyer,et al.  Excited state processes at sensitized nanocrystalline thin film semiconductor interfaces , 2001 .

[46]  L. Shoute,et al.  Excited-state dynamics of alizarin-sensitized TiO2 nanoparticles from resonance Raman spectroscopy , 2002 .

[47]  J. Hupp,et al.  Interfacial Charge Transfer and Colloidal Semiconductor Dye-Sensitization: Mechanism Assessment via Stark Emission Spectroscopy , 2002 .

[48]  E. Heilweil,et al.  Direct time-resolved infrared measurement of electron injection in dye-sensitized titanium dioxide films , 1997 .

[49]  Michael Grätzel,et al.  Subpicosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide films , 1996 .

[50]  C. Brooksby,et al.  Quantized mean-field approximation , 2001 .

[51]  M. Newton,et al.  Electron Transfer Reactions in Condensed Phases , 1984 .

[52]  R. Marcus,et al.  Nonadiabatic Electron Transfer at Metal Surfaces , 2000 .

[53]  O. Prezhdo,et al.  Extension of quantized Hamilton dynamics to higher orders , 2002 .

[54]  Lionel R Milgrom,et al.  Molecular control of recombination dynamics in dye sensitised nanocrystalline TiO2 films. , 2002, Chemical communications.

[55]  Rudolph A. Marcus,et al.  On the Theory of Electron-Transfer Reactions. VI. Unified Treatment for Homogeneous and Electrode Reactions , 1965 .

[56]  M. Mishra,et al.  Role of electronic structure of ruthenium polypyridyl dyes in the photoconversion efficiency of dye‐sensitized solar cells: Semiempirical investigation , 2002 .

[57]  D. Sholl,et al.  A generalized surface hopping method , 1998 .

[58]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[59]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[60]  S. Jockusch,et al.  Preparation and application of new ruthenium(II) polypyridyl complexes as sensitizers for nanocrystalline TiO2 , 2000 .

[61]  J. Rabani,et al.  Photosensitization of nanocrystalline TiO2 films by anthocyanin dyes , 2002 .

[62]  R. Hochstrasser,et al.  Vibrational relaxation dynamics in solutions. , 1994, Annual review of physical chemistry.

[63]  C Brooksby,et al.  Quantum backreaction through the Bohmian particle. , 2001, Physical review letters.

[64]  W. Miller,et al.  Semiclassical initial value representation for electronically nonadiabatic molecular dynamics , 1997 .

[65]  G. Voth,et al.  Modeling the free energy surfaces of electron transfer in condensed phases , 2000 .

[66]  Luc Patthey,et al.  Experimental evidence for sub-3-fs charge transfer from an aromatic adsorbate to a semiconductor , 2002, Nature.

[67]  C. Kittel Introduction to solid state physics , 1954 .

[68]  Donald G. Truhlar,et al.  Continuous surface switching: An improved time-dependent self-consistent-field method for nonadiabatic dynamics , 2000 .

[69]  F. Willig,et al.  Ultrafast dynamics of light-induced electron injection from a molecular donor into the wide conduction band of a semiconductor as acceptor , 2000 .

[70]  P. Rossky,et al.  Quantum decoherence in mixed quantum‐classical systems: Nonadiabatic processes , 1995 .

[71]  Claude Leforestier,et al.  A comparison of different propagation schemes for the time dependent Schro¨dinger equation , 1991 .

[72]  Time-resolved experiments in dye-sensitized solar cells using [(dcbH2)2Ru(ppy)2](ClO4)2 as a nanocrystalline TiO2 sensitizer , 2002 .

[73]  Joshua Jortner,et al.  Intramolecular Radiationless Transitions , 1968 .

[74]  P. Rossky,et al.  Evaluation of quantum transition rates from quantum-classical molecular dynamics simulations , 1997 .

[75]  S. Hotchandani,et al.  Excited-state properties and photosensitization behaviour of bis(2,4-dihydroxyphenyl)squaraine , 1993 .

[76]  O. Prezhdo,et al.  Mixing Quantum and Classical Mechanics , 1996, quant-ph/9610016.

[77]  P. Rossky,et al.  RELATIONSHIP BETWEEN QUANTUM DECOHERENCE TIMES AND SOLVATION DYNAMICS IN CONDENSED PHASE CHEMICAL SYSTEMS , 1998, quant-ph/9804004.

[78]  and Mark R. Waterland,et al.  Electron Injection Dynamics of RuII(dcbpy)2(SCN)2 on Zirconia , 2002 .

[79]  N. Lewis,et al.  Transient absorption spectroscopy of ruthenium and osmium polypyridyl complexes adsorbed onto nanocrystalline TiO2 photoelectrodes , 2002 .

[80]  S. Hammes-Schiffer,et al.  Proton transfer in solution: Molecular dynamics with quantum transitions , 1994 .

[81]  V. May,et al.  Bridge mediated ultrafast heterogeneous electron transfer , 2002 .

[82]  Theoretical Studies of Electron Transfer and Electron Localization at the Semiconductor−Liquid Interface , 1997 .

[83]  Y. Pereverzev,et al.  Quantized Hamilton dynamics for a general potential , 2002 .