Secrecy by Witness Functions

In this paper, we introduce a new type of functions to analyze cryptographic protocols statically for the property of secrecy: the Witness-Functions. A Witness-Function is a reliable protocol-dependent function intended to prove the correctness of a protocol through its growth. It bases its calculation on the static part of a message in a role-based speci cation and ignores the dynamic one by introducing the notion of derivative messages. It o ers two interesting bounds that enable an analysis of protocols on an unbounded number of sessions. We give here the way to build these functions and we state the theorem of protocol analysis with the Witness-Functions.

[1]  Mourad Debbabi,et al.  An environment for the specification and analysis of cryptoprotocols , 1998, Proceedings 14th Annual Computer Security Applications Conference (Cat. No.98EX217).

[2]  Steve A. Schneider Security properties and CSP , 1996, Proceedings 1996 IEEE Symposium on Security and Privacy.

[3]  Véronique Cortier,et al.  Deciding security properties for cryptographic protocols. application to key cycles , 2007, TOCL.

[4]  Mohamed Mejri,et al.  Formal Analysis of SET and NSL Protocols Using the Interpretation Functions-Based Method , 2012, J. Comput. Networks Commun..

[5]  Steve A. Schneider Verifying Authentication Protocols in CSP , 1998, IEEE Trans. Software Eng..

[6]  Véronique Cortier,et al.  Decidability and Combination Results for Two Notions of Knowledge in Security Protocols , 2012, Journal of Automated Reasoning.

[7]  Nadia Tawbi,et al.  From protocol specifications to flaws and attack scenarios: an automatic and formal algorithm , 1997, Proceedings of IEEE 6th Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises.

[8]  Bruno Blanchet,et al.  Automatic verification of correspondences for security protocols , 2008, J. Comput. Secur..

[9]  Martín Abadi,et al.  Reasoning about Cryptographic Protocols in the Spi Calculus , 1997, CONCUR.

[10]  Hubert Comon-Lundh,et al.  Rewriting, Computation and Proof, Essays Dedicated to Jean-Pierre Jouannaud on the Occasion of His 60th Birthday , 2007, Rewriting, Computation and Proof.

[11]  Mohamed Mejri,et al.  Ensuring the Correctness of Cryptographic Protocols with Respect to Secrecy , 2008, SECRYPT.

[12]  Steve A. Schneider,et al.  Verifying Security Protocols: An Application of CSP , 2004, 25 Years Communicating Sequential Processes.

[13]  Mohamed Mejri,et al.  Practical and Universal Interpretation Functions for Secrecy , 2007, SECRYPT.

[14]  Véronique Cortier Secure Composition of Protocols , 2011, TOSCA.

[15]  Martín Abadi,et al.  A calculus for cryptographic protocols: the spi calculus , 1997, CCS '97.

[16]  Martín Abadi,et al.  Secrecy by typing in security protocols , 1999, JACM.

[17]  Danny Dolev,et al.  On the security of public key protocols , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[18]  Hamido Fujita,et al.  Secrecy of cryptographic protocols under equational theory , 2009, Knowl. Based Syst..

[19]  Nachum Dershowitz,et al.  In handbook of automated reasoning , 2001 .

[20]  Véronique Cortier,et al.  Safely composing security protocols , 2009, Formal Methods Syst. Des..

[21]  Véronique Cortier,et al.  A Survey of Symbolic Methods in Computational Analysis of Cryptographic Systems , 2011, Journal of Automated Reasoning.

[22]  Steve A. Schneider,et al.  A decision procedure for the existence of a rank function , 2005, J. Comput. Secur..

[23]  Véronique Cortier,et al.  Protocol Composition for Arbitrary Primitives , 2010, 2010 23rd IEEE Computer Security Foundations Symposium.

[24]  Tobias Nipkow,et al.  Term rewriting and all that , 1998 .