Linear Convergence of Randomized Primal-Dual Coordinate Method for Large-scale Linear Constrained Convex Programming

Linear constrained convex programming has many practical applications, including support vector machine and machine learning portfolio problems. We propose the randomized primal-dual coordinate (RPDC) method, a randomized coordinate extension of the first-order primal-dual method by Cohen and Zhu, 1984 and Zhao and Zhu, 2019, to solve linear constrained convex programming. We randomly choose a block of variables based on a uniform distribution, linearize, and apply a Bregman-like function (core function) to the selected block to obtain simple parallel primal-dual decomposition. We then establish almost surely convergence and expected O(1/t) convergence rate, and expected linear convergence under global strong metric subregularity. Finally, we discuss implementation details for the randomized primal-dual coordinate approach and present numerical experiments on support vector machine and machine learning portfolio problems to verify the linear convergence.

[1]  M. Fortin,et al.  On decomposition - coordination methods using an augmented Lagrangian , 1983 .

[2]  Stephen J. Wright,et al.  Asynchronous Stochastic Coordinate Descent: Parallelism and Convergence Properties , 2014, SIAM J. Optim..

[3]  H. Robbins,et al.  A Convergence Theorem for Non Negative Almost Supermartingales and Some Applications , 1985 .

[4]  Zhao-Rong Lai,et al.  Short-term Sparse Portfolio Optimization Based on Alternating Direction Method of Multipliers , 2018, J. Mach. Learn. Res..

[5]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[6]  Pat Langley,et al.  Crafting Papers on Machine Learning , 2000, ICML.

[7]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[8]  Bin Li,et al.  OLPS: A Toolbox for On-Line Portfolio Selection , 2016, J. Mach. Learn. Res..

[9]  Lin Xiao,et al.  On the complexity analysis of randomized block-coordinate descent methods , 2013, Mathematical Programming.

[10]  M. J. D. Powell,et al.  A method for nonlinear constraints in minimization problems , 1969 .

[11]  Daoli Zhu,et al.  First-Order Primal-Dual Method for Nonlinear Convex Cone Programs , 2018 .

[12]  J. Lewellen The Cross Section of Expected Stock Returns , 2014 .

[13]  Yurii Nesterov,et al.  Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems , 2012, SIAM J. Optim..

[14]  Yangyang Xu,et al.  Asynchronous parallel primal–dual block coordinate update methods for affinely constrained convex programs , 2017, Comput. Optim. Appl..

[15]  Stephen J. Wright,et al.  An asynchronous parallel stochastic coordinate descent algorithm , 2013, J. Mach. Learn. Res..

[16]  Jun Wang,et al.  Doubly Regularized Portfolio with Risk Minimization , 2014, AAAI.

[17]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[18]  I. Daubechies,et al.  Sparse and stable Markowitz portfolios , 2007, Proceedings of the National Academy of Sciences.

[19]  Marc Teboulle,et al.  Mirror descent and nonlinear projected subgradient methods for convex optimization , 2003, Oper. Res. Lett..

[20]  Peter Richtárik,et al.  Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function , 2011, Mathematical Programming.

[21]  Bernhard Schölkopf,et al.  New Support Vector Algorithms , 2000, Neural Computation.

[22]  Yangyang Xu,et al.  Randomized Primal–Dual Proximal Block Coordinate Updates , 2016, Journal of the Operations Research Society of China.

[23]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[24]  Jack Xin,et al.  Weighted Elastic Net Penalized Mean-Variance Portfolio Design and Computation , 2015, SIAM J. Financial Math..

[25]  Chih-Jen Lin,et al.  Iteration complexity of feasible descent methods for convex optimization , 2014, J. Mach. Learn. Res..

[26]  R. Rockafellar,et al.  Implicit Functions and Solution Mappings , 2009 .

[27]  M. Hestenes Multiplier and gradient methods , 1969 .

[28]  Ion Necoara,et al.  A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints , 2013, Comput. Optim. Appl..

[29]  P. Tseng,et al.  On the convergence of the coordinate descent method for convex differentiable minimization , 1992 .

[30]  P. Tseng Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization , 2001 .

[31]  Yangyang Xu,et al.  Accelerated primal–dual proximal block coordinate updating methods for constrained convex optimization , 2017, Comput. Optim. Appl..

[32]  Xi Yin Zheng,et al.  Metric Subregularity of Piecewise Linear Multifunctions and Applications to Piecewise Linear Multiobjective Optimization , 2014, SIAM J. Optim..