Analysis of a Two‐Phase Queueing System with Vacations and Bernoulli Feedback

Abstract We consider a two‐phase queueing system with server vacations and Bernoulli feedback. Customers arrive at the system according to a Poisson process and receive batch service in the first phase followed by individual services in the second phase. Each customer who completes the individual service returns to the tail of the second phase service queue with probability 1 − σ. If the system becomes empty at the moment of the completion of the second phase services, the server takes vacations until he finds customers. This type of queueing problem can be easily found in computer and telecommunication systems. By deriving a relationship between the generating functions for the system size at various embedded epochs, we obtain the system size distribution at an arbitrary time. The exhaustive and gated cases for the batch service are considered.