A multi-resolution approach to heat kernels on discrete surfaces

Studying the behavior of the heat diffusion process on a manifold is emerging as an important tool for analyzing the geometry of the manifold. Unfortunately, the high complexity of the computation of the heat kernel -- the key to the diffusion process - limits this type of analysis to 3D models of modest resolution. We show how to use the unique properties of the heat kernel of a discrete two dimensional manifold to overcome these limitations. Combining a multi-resolution approach with a novel approximation method for the heat kernel at short times results in an efficient and robust algorithm for computing the heat kernels of detailed models. We show experimentally that our method can achieve good approximations in a fraction of the time required by traditional algorithms. Finally, we demonstrate how these heat kernels can be used to improve a diffusion-based feature extraction algorithm.

[1]  P. Wesseling An Introduction to Multigrid Methods , 1992 .

[2]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[3]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[4]  B. Codenotti,et al.  The Padé method for computing the matrix exponential , 1996 .

[5]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[6]  C. Lubich,et al.  On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .

[7]  Hans-Peter Seidel,et al.  Interactive multi-resolution modeling on arbitrary meshes , 1998, SIGGRAPH.

[8]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[9]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[10]  R. Coifman,et al.  Diffusion Wavelets , 2004 .

[11]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[12]  Guoliang Xu Discrete Laplace-Beltrami operators and their convergence , 2004, Comput. Aided Geom. Des..

[13]  Bruno Lévy,et al.  ABF++: fast and robust angle based flattening , 2005, TOGS.

[14]  Andrei Khodakovsky,et al.  Multilevel Solvers for Unstructured Surface Meshes , 2005, SIAM J. Sci. Comput..

[15]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[16]  Lin Shi,et al.  A fast multigrid algorithm for mesh deformation , 2006, ACM Trans. Graph..

[17]  Steven W. Zucker,et al.  Diffusion Maps and Geometric Harmonics for Automatic Target Recognition (ATR). Volume 2. Appendices , 2007 .

[18]  Paolo Cignoni,et al.  MeshLab: an Open-Source 3D Mesh Processing System , 2008, ERCIM News.

[19]  Bruno Lévy,et al.  Spectral Geometry Processing with Manifold Harmonics , 2008, Comput. Graph. Forum.

[20]  Mikhail Belkin,et al.  Discrete laplace operator on meshed surfaces , 2008, SCG '08.

[21]  Luiz Velho,et al.  A Hierarchical Segmentation of Articulated Bodies , 2008, Comput. Graph. Forum.

[22]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[23]  Facundo Mémoli,et al.  Spectral Gromov-Wasserstein distances for shape matching , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.