Motion detection and tracking using belief indicators for an automatic visual-surveillance system

Abstract A motion detection and tracking algorithm for human and car activity surveillance is presented and evaluated by using the Pets'2000 test sequence. The proposed approach uses a temporal fusion strategy by using the history of events in order to improve instantaneous decisions. Normalized indicators updated at each frame summarize the history of specific events. For the motion detection stage, a fast updating algorithm of the background reference is proposed. The control of the updating at each pixel is based on a stability indicator estimated from inter-frame variations. The tracking algorithm uses a region-based approach. A belief indicator representing the tracking consistency for each object allows solving defined ambiguities at the tracking level. A second specific tracking indicator representing the identity quality of each tracked object is updated by integrating object interaction. Tracking indicators permit to propagate uncertainties on higher levels of the interpretation and are directly useful in the tracking performance evaluation.

[1]  Hans-Hellmut Nagel,et al.  Model-Based Object Tracking in Traffic Scenes , 1992, ECCV.

[2]  Shyang Chang,et al.  Statistical change detection with moments under time-varying illumination , 1998, IEEE Trans. Image Process..

[3]  Hans-Hellmut Nagel,et al.  3D pose estimation by fitting image gradients directly to polyhedral models , 1995, Proceedings of IEEE International Conference on Computer Vision.

[4]  Lucia Ballerini,et al.  Time-Varying Image Processing and Moving Object Recognition , 1997 .

[5]  Y. Bar-Shalom Tracking and data association , 1988 .

[6]  Rachid Deriche,et al.  Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Andrew Blake,et al.  A framework for spatiotemporal control in the tracking of visual contours , 1993, International Journal of Computer Vision.

[8]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[9]  D. Dubois,et al.  Possibility theory and data fusion in poorly informed environments , 1994 .

[10]  Tieniu Tan,et al.  Recent developments in human motion analysis , 2003, Pattern Recognit..

[11]  M. Worring,et al.  Occlusion robust adaptive template tracking , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[12]  James W. Davis,et al.  The Representation and Recognition of Action Using Temporal Templates , 1997, CVPR 1997.

[13]  Cina MOTAMED,et al.  Réactualisation d ' une image de référence pour la détection du mouvement dans les scènes urbaine s Updating a Reference Image for Detecting Motion in Urban Scenes , 2006 .

[14]  Alex Pentland,et al.  Understanding purposeful human motion , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[15]  Michael Isard,et al.  Contour Tracking by Stochastic Propagation of Conditional Density , 1996, ECCV.

[16]  Ishwar K. Sethi,et al.  Finding Trajectories of Feature Points in a Monocular Image Sequence , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Cina Motamed Video indexing based on object motion for video-surveillance context , 2000, RIAO.

[18]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[19]  J. Crowley,et al.  Multi-Modal Tracking of Interacting Targets Using Gaussian Approximations , 2001 .

[20]  A F Bobick,et al.  Movement, activity and action: the role of knowledge in the perception of motion. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[21]  K. P. Karmann,et al.  Moving object recognition using an adaptive background memory , 1990 .

[22]  Mubarak Shah,et al.  Establishing motion correspondence , 1991, CVGIP Image Underst..

[23]  Azriel Rosenfeld,et al.  Tracking Groups of People , 2000, Comput. Vis. Image Underst..

[24]  Geoffrey D. Sullivan,et al.  A Generic Deformable Model for Vehicle Recognition , 1995, BMVC.

[25]  Larry S. Davis,et al.  Multiple vehicle detection and tracking in hard real-time , 1996, Proceedings of Conference on Intelligent Vehicles.

[26]  Jake K. Aggarwal,et al.  Nonrigid Motion Analysis: Articulated and Elastic Motion , 1998, Comput. Vis. Image Underst..

[27]  Cor J. Veenman,et al.  Resolving Motion Correspondence for Densely Moving Points , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Rama Chellappa,et al.  Automatic feature point extraction and tracking in image sequences for arbitrary camera motion , 1995, International Journal of Computer Vision.

[29]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Carlo S. Regazzoni,et al.  A change-detection method for multiple object localization in real scenes , 1994, Proceedings of IECON'94 - 20th Annual Conference of IEEE Industrial Electronics.

[31]  Patrick Bouthemy,et al.  Region-Based Tracking Using Affine Motion Models in Long Image Sequences , 1994 .