Probabilistic collocation for period-1 limit cycle oscillations

In this paper probabilistic collocation for limit cycle oscillations (PCLCO) is proposed. Probabilistic collocation (PC) is a non-intrusive approach to compute the polynomial chaos description of uncertainty numerically. Polynomial chaos can require impractical high orders to approximate long-term time integration problems, due to the fast increase of required polynomial chaos order with time. PCLCO is a PC formulation for modeling the long-term stochastic behavior of dynamical systems exhibiting a periodic response, i.e. a limit cycle oscillation (LCO). In the PC method deterministic time series are computed at collocation points in probability space. In PCLCO, PC is applied to a time-independent parametrization of the periodic response of the deterministic solves instead of to the time-dependent functions themselves. Due to the time-independent parametrization the accuracy of PCLCO is independent of time. The approach is applied to period-1 oscillations with one main frequency subject to a random parameter. Numerical results are presented for the harmonic oscillator, a two-dof airfoil flutter model and the fluid-structure interaction of an elastically mounted cylinder.

[1]  R. Ghanem,et al.  Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .

[2]  I. Babuska,et al.  Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .

[3]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[4]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[5]  M. P. Païdoussis,et al.  NUMERICAL SOLUTIONS OF SECOND ORDER IMPLICIT NON-LINEAR ORDINARY DIFFERENTIAL EQUATIONS , 1996 .

[6]  R. T. Jones The unsteady lift of a wing of finite aspect ratio , 1940 .

[7]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[8]  N. Wiener The Homogeneous Chaos , 1938 .

[9]  J. Thompson,et al.  Nonlinear Dynamics and Chaos , 2002 .

[10]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[11]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[12]  Chris L. Pettit,et al.  Uncertainty Quantification in Aeroelasticity: Recent Results and Research Challenges , 2004 .

[13]  Henry T. Y. Yang,et al.  Reliability and nonlinear supersonic flutter of uncertain laminated plates , 1993 .

[14]  W. Schoutens Stochastic processes and orthogonal polynomials , 2000 .

[15]  Stuart J. Price,et al.  Bifurcation characteristics of a two-dimensional structurally non-linear airfoil in turbulent flow , 2007 .

[16]  Chris L. Pettit,et al.  Effects of Uncertainty on Nonlinear Plate Aeroelastic Response , 2002 .

[17]  J. Anderson,et al.  Fundamentals of Aerodynamics , 1984 .

[18]  Menner A Tatang,et al.  Direct incorporation of uncertainty in chemical and environmental engineering systems , 1995 .

[19]  Steven R. Bishop,et al.  Nonlinearity and Chaos in Engineering Dynamics , 1994 .

[20]  G. Karniadakis,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .

[21]  Chris L. Pettit,et al.  Spectral and multiresolution Wiener expansions of oscillatory stochastic processes , 2006 .

[22]  A. Sarkar,et al.  Mid-frequency structural dynamics with parameter uncertainty , 2001 .

[23]  R. Ghanem,et al.  Uncertainty propagation using Wiener-Haar expansions , 2004 .

[24]  Y. Wong,et al.  Flutter of an airfoil with a cubic nonlinear restoring force , 1998 .

[25]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[26]  Thomas A. Zang,et al.  Stochastic approaches to uncertainty quantification in CFD simulations , 2005, Numerical Algorithms.

[27]  G. Karniadakis,et al.  Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..

[28]  Chris L. Pettit,et al.  Effects of Parametric Uncertainty on Airfoil Limit Cycle Oscillation , 2003 .

[29]  George Em Karniadakis,et al.  Noisy inflows cause a shedding-mode switching in flow past an oscillating cylinder. , 2004, Physical review letters.

[30]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[31]  Jeroen A. S. Witteveen,et al.  Modeling physical uncertainties in dynamic stall induced fluid-structure interaction of turbine blades using arbitrary polynomial chaos , 2007 .

[32]  G. Karniadakis,et al.  Long-Term Behavior of Polynomial Chaos in Stochastic Flow Simulations , 2006 .

[33]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..