Optimizing the numerical port for inverted microstrip gap waveguide in full-wave simulators

Currently the inverted microstrip gap waveguide has been considered as a promising technology for millimeter wave wireless applications. Theoretically, the new structure may be considered as a two layer shielded structure where the bottom layer consists of an array of periodic metallic pins which works as an artificial magnetic conductor (AMC). However, it is difficult to evaluate electromagnetic properties and performance of the new waveguide by using traditional waveguide ports or discrete ports in available full-wave simulator. In order to solve the problem, this paper proposes an effective method to determine dimensions of traditional waveguide ports in existing commercial full wave simulator to be used while simulating the inverted microstrip gap waveguide structures. The procedure includes the analysis of quasi-TEM mode of the inverted microstrip gap waveguide and the corresponding size of the waveguide port, as well as the location and boundary conditions used in the simulation software. The numerical port proposed in this work is much better than the ports used previously.

[1]  E. Rajo-Iglesias,et al.  Local Metamaterial-Based Waveguides in Gaps Between Parallel Metal Plates , 2009, IEEE Antennas and Wireless Propagation Letters.

[2]  Per-Simon Kildal,et al.  Three metamaterial-based gap waveguides between parallel metal plates for mm/submm waves , 2009, 2009 3rd European Conference on Antennas and Propagation.

[3]  P.-S. Kildal,et al.  Parallel Plate Cavity Mode Suppression in Microstrip Circuit Packages Using a Lid of Nails , 2010, IEEE Microwave and Wireless Components Letters.

[4]  Ashraf Uz Zaman,et al.  Using Lid of pins for packaging of microstrip board for descrambling the ports of eleven antenna for radio telescope applications , 2010, 2010 IEEE Antennas and Propagation Society International Symposium.

[5]  Per-Simon Kildal,et al.  Validation of ridge gap waveguide performance using in-house TRL calibration kit , 2010, Proceedings of the Fourth European Conference on Antennas and Propagation.

[6]  Eva Rajo-Iglesias,et al.  Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression , 2011 .

[7]  E. Rajo-Iglesias,et al.  Bed of Springs for Packaging of Microstrip Circuits in the Microwave Frequency Range , 2012, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[8]  P. Kildal,et al.  Improved Microstrip Filters Using PMC Packaging by Lid of Nails , 2012, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[9]  A. U. Zaman,et al.  Slot antenna in ridge gap waveguide technology , 2012, 2012 6th European Conference on Antennas and Propagation (EUCAP).

[10]  Ashraf Uz Zaman,et al.  Ka-Band Gap Waveguide Coupled-Resonator Filter for Radio Link Diplexer Application , 2013, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[11]  Jian Yang,et al.  Study of the characteristic impedance of gap waveguide microstrip line realized with square metal pins , 2013, 2013 7th European Conference on Antennas and Propagation (EuCAP).

[12]  Eva Rajo-Iglesias,et al.  Planar Dual-Mode Horn Array With Corporate-Feed Network in Inverted Microstrip Gap Waveguide , 2014, IEEE Transactions on Antennas and Propagation.

[13]  P. Kildal,et al.  Wide-Band Slot Antenna Arrays With Single-Layer Corporate-Feed Network in Ridge Gap Waveguide Technology , 2014, IEEE Transactions on Antennas and Propagation.

[14]  Ashraf Uz Zaman,et al.  Gap Waveguide PMC Packaging for Improved Isolation of Circuit Components in High-Frequency Microwave Modules , 2014, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[15]  Per-Simon Kildal,et al.  2$\times$ 2-Slot Element for 60-GHz Planar Array Antenna Realized on Two Doubled-Sided PCBs Using SIW Cavity and EBG-Type Soft Surface fed by Microstrip-Ridge Gap Waveguide , 2014, IEEE Transactions on Antennas and Propagation.