Scale invariance in biology: coincidence or footprint of a universal mechanism?

In this article, we present a self‐contained review of recent work on complex biological systems which exhibit no characteristic scale. This property can manifest itself with fractals (spatial scale invariance), flicker noise or 1/f‐noise where f denotes the frequency of a signal (temporal scale invariance) and power laws (scale invariance in the size and duration of events in the dynamics of the system). A hypothesis recently put forward to explain these scale‐free phenomomena is criticality, a notion introduced by physicists while studying phase transitions in materials, where systems spontaneously arrange themselves in an unstable manner similar, for instance, to a row of dominoes. Here, we review in a critical manner work which investigates to what extent this idea can be generalized to biology. More precisely, we start with a brief introduction to the concepts of absence of characteristic scale (power‐law distributions, fractals and 1/f‐noise) and of critical phenomena. We then review typical mathematical models exhibiting such properties: edge of chaos, cellular automata and self‐organized critical models. These notions are then brought together to see to what extent they can account for the scale invariance observed in ecology, evolution of species, type III epidemics and some aspects of the central nervous system. This article also discusses how the notion of scale invariance can give important insights into the workings of biological systems.

[1]  B. Kendall Nonlinear Dynamics and Chaos , 2001 .

[2]  Xxyyzz Transactions of the American Society of Civil Engineers 2002 , 2001 .

[3]  D. Turcotte,et al.  Self-organized criticality , 1999 .

[4]  Paolo De Los Rios,et al.  Universal 1/f Noise from Dissipative Self-Organized Criticality Models , 1999 .

[5]  P. Bak,et al.  Learning from mistakes , 1997, Neuroscience.

[6]  Andr'e M. C. Souza,et al.  Criticality in a simple model for brain functioning , 1998 .

[7]  Pejman Rohani,et al.  Intrinsically generated coloured noise in laboratory insect populations , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[8]  滋 篠本,et al.  Computation and the single neuron , 1998 .

[9]  M I Posner,et al.  Anatomy of word and sentence meaning. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[10]  S. Evangelou,et al.  1/f noise and multifractal fluctuations in rat behavior , 1997 .

[11]  H. Jensen,et al.  On the critical behaviour of simple epidemics , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[12]  Ramón A. Mata-Toledo,et al.  Visualization of random sequences using the chaos game algorithm , 1997, J. Syst. Softw..

[13]  Mark Newman Evidence for self-organized criticality in evolution , 1997 .

[14]  R. Solé,et al.  ON FOREST SPATIAL DYNAMICS WITH GAP FORMATION , 1997 .

[15]  David L. Gilden,et al.  Fluctuations in the Time Required for Elementary Decisions , 1997 .

[16]  David M. Raup,et al.  How Nature Works: The Science of Self-Organized Criticality , 1997 .

[17]  James H. Brown,et al.  A General Model for the Origin of Allometric Scaling Laws in Biology , 1997, Science.

[18]  Ricard V. Solé,et al.  Criticality and unpredictability in macroevolution , 1997 .

[19]  M. Newman,et al.  A model of mass extinction. , 1997, Journal of theoretical biology.

[20]  R. Solé,et al.  Self-similarity of extinction statistics in the fossil record , 1997, Nature.

[21]  Christof Koch,et al.  Computation and the single neuron , 1997, Nature.

[22]  C. Tsallis,et al.  Power-law sensitivity to initial conditions within a logisticlike family of maps: Fractality and nonextensivity , 1997, cond-mat/9701096.

[23]  A. von Deimling,et al.  Scientific Correspondence , 2011, Nature.

[24]  Per Bak,et al.  How Nature Works: The Science of Self‐Organized Criticality , 1997 .

[25]  R. Anderson,et al.  A scaling analysis of measles epidemics in a small population. , 1996, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[26]  M. Begon,et al.  Explaining the colour of power spectra in chaotic ecological models , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[27]  R Gattass,et al.  Responses of cells in the superior colliculus during performance of a spatial attention task in the macaque. , 1996, Revista brasileira de biologia.

[28]  R. Solé,et al.  Extinction: bad genes or weak chaos? , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[29]  David Ferster,et al.  Is Neural Noise Just a Nuisance? , 1996, Science.

[30]  A. Grinvald,et al.  Dynamics of Ongoing Activity: Explanation of the Large Variability in Evoked Cortical Responses , 1996, Science.

[31]  Pablo A. Marquet,et al.  The Introduced Hawaiian Avifauna Reconsidered: Evidence for Self-Organized Criticality? , 1996 .

[32]  M. Newman Self-organized criticality, evolution and the fossil extinction record , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[33]  Solé,et al.  Extinction and self-organized criticality in a model of large-scale evolution. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[34]  Ricard V. Solé,et al.  On macroevolution, extinctions and critical phenomena , 1996, Complex..

[35]  R. Anderson,et al.  Power laws governing epidemics in isolated populations , 1996, Nature.

[36]  G. Sugihara Red/blue chaotic power spectra , 1996, Nature.

[37]  E. Ranta,et al.  Red/blue chaotic power spectra , 1996, Nature.

[38]  M. Begon,et al.  Red/blue chaotic power spectra , 1996, Nature.

[39]  M. Doebeli,et al.  In the red zone , 1996, Nature.

[40]  R. Solé,et al.  Are critical phenomena relevant to large-scale evolution? , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[41]  Christensen,et al.  Tracer Dispersion in a Self-Organized Critical System. , 1996, Physical review letters.

[42]  V. Frette,et al.  Avalanche dynamics in a pile of rice , 1996, Nature.

[43]  Per Bak,et al.  How Nature Works , 1996 .

[44]  J. Halley Ecology, evolution and 1 f -noise. , 1996, Trends in ecology & evolution.

[45]  D. T. Kaplan,et al.  Nonstationarity and 1/ f noise characteristics in heart rate. , 1999, American Journal of Physiology. Regulatory Integrative and Comparative Physiology.

[46]  Joel E. Cohen,et al.  Unexpected dominance of high frequencies in chaotic nonlinear population models , 1995, Nature.

[47]  Kim Sneppen,et al.  Extremal dynamics and punctuated co-evolution , 1995 .

[48]  J. Bascompte,et al.  Rethinking complexity: modelling spatiotemporal dynamics in ecology. , 1995, Trends in ecology & evolution.

[49]  P. Bak,et al.  Complexity, contingency, and criticality. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Solé,et al.  Self-similarity in rain forests: Evidence for a critical state. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[51]  P. Bak,et al.  Evolution as a self-organized critical phenomenon. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Stassinopoulos,et al.  Democratic reinforcement: A principle for brain function. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[53]  M. Benton,et al.  Diversification and extinction in the history of life. , 1995, Science.

[54]  D L Gilden,et al.  1/f noise in human cognition. , 1995, Science.

[55]  Ricard V. Solé,et al.  Are rainforests self-organized in a critical state? , 1995 .

[56]  Tang,et al.  Relaxation-induced polarized luminescence from InxGa1-xAs films grown on GaAs(001). , 1995, Physical review. B, Condensed matter.

[57]  Drossel,et al.  Scaling laws and simulation results for the self-organized critical forest-fire model. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[58]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[59]  Bak,et al.  Punctuated equilibrium and criticality in a simple model of evolution. , 1993, Physical review letters.

[60]  Maya Paczuski,et al.  Why Nature is complex , 1993 .

[61]  P. Kaye Infectious diseases of humans: Dynamics and control , 1993 .

[62]  J. Sepkoski,et al.  Ten years in the library: new data confirm paleontological patterns , 1993, Paleobiology.

[63]  T. Sales Life in one dimension: statistics and self-organized criticality , 1993 .

[64]  N. Eldredge,et al.  Punctuated equilibrium comes of age , 1993, Nature.

[65]  Giorgio Parisi,et al.  Statistical Physics and biology , 1993 .

[66]  B Burlando,et al.  The fractal geometry of evolution. , 1993, Journal of theoretical biology.

[67]  R. Ruthen Adapting to Complexity , 1993 .

[68]  Joab R Winkler,et al.  Numerical recipes in C: The art of scientific computing, second edition , 1993 .

[69]  S. Ellner,et al.  Chaos in Ecology: Is Mother Nature a Strange Attractor?* , 1993 .

[70]  Michael J. Benton,et al.  The fossil record 2 , 1993 .

[71]  B. Grieger Quaternary climatic fluctuations as a consequence of self-organized criticality , 1992 .

[72]  Flyvbjerg,et al.  Coevolution in a rugged fitness landscape. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[73]  Drossel,et al.  Self-organized critical forest-fire model. , 1992, Physical review letters.

[74]  A. Fisher,et al.  The Theory of critical phenomena , 1992 .

[75]  Christensen,et al.  Deterministic 1/f noise in nonconserative models of self-organized criticality. , 1992, Physical review letters.

[76]  D. Turcotte Fractals and Chaos in Geology and Geophysics , 1992 .

[77]  D. T. Kaplan,et al.  Direct test for determinism in a time series. , 1992, Physical review letters.

[78]  A. Gallant,et al.  Finding Chaos in Noisy Systems , 1992 .

[79]  Michael P. Hassell,et al.  Spatial structure and chaos in insect population dynamics , 1991, Nature.

[80]  D. Jablonski,et al.  Extinctions: a paleontological perspective. , 1991, Science.

[81]  R. May,et al.  Infectious Diseases of Humans: Dynamics and Control , 1991, Annals of Internal Medicine.

[82]  J E McNamee,et al.  Fractal perspectives in pulmonary physiology. , 1991, Journal of applied physiology.

[83]  Kim Christensen,et al.  Dynamical and spatial aspects of sandpile cellular automata , 1991 .

[84]  S. Kauffman,et al.  Coevolution to the edge of chaos: coupled fitness landscapes, poised states, and coevolutionary avalanches. , 1991, Journal of theoretical biology.

[85]  B. Burlando The Fractal Dimension of Taxonomic Systems , 1990 .

[86]  P. Bak,et al.  A forest-fire model and some thoughts on turbulence , 1990 .

[87]  Jensen Lattice gas as a model of 1/f noise. , 1990, Physical Review Letters.

[88]  Christopher G. Langton,et al.  Computation at the edge of chaos: Phase transitions and emergent computation , 1990 .

[89]  J. Kertész,et al.  The noise spectrum in the model of self-organised criticality , 1990 .

[90]  H. J. Jeffrey Chaos game representation of gene structure. , 1990, Nucleic acids research.

[91]  George Sugihara,et al.  Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series , 1990, Nature.

[92]  Bruce J. West,et al.  Chaos and fractals in human physiology. , 1990, Scientific American.

[93]  Bruce J. West,et al.  Chaos and fractals in human physiology. , 1990, Scientific American.

[94]  P. Bak,et al.  Self-organized criticality in the 'Game of Life" , 1989, Nature.

[95]  A. Hoffman What, if anything, are mass extinctions? , 1989 .

[96]  M. R. House Ammonoid extinction events , 1989 .

[97]  John Maynard Smith,et al.  The causes of extinction. , 1989, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[98]  D. Raup The case for extraterrestrial causes of extinction. , 1989, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[99]  Jensen,et al.  1/f noise, distribution of lifetimes, and a pile of sand. , 1989, Physical review. B, Condensed matter.

[100]  K. Chen,et al.  The physics of fractals , 1989 .

[101]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[102]  Daniel L. Stein,et al.  Lectures In The Sciences Of Complexity , 1989 .

[103]  Didier Sornette,et al.  Self-Organized Criticality and Earthquakes , 1989 .

[104]  K. Kaneko Pattern dynamics in spatiotemporal chaos: Pattern selection, diffusion of defect and pattern competition intermettency , 1989 .

[105]  A A Berryman,et al.  Are ecological systems chaotic - And if not, why not? , 1989, Trends in ecology & evolution.

[106]  I. Prigogine,et al.  Exploring Complexity: An Introduction , 1989 .

[107]  Harvey Gould,et al.  An Introduction to Computer Simulation Methods: Applications to Physical Systems , 2006 .

[108]  W. Gurney,et al.  Parameter evolution in a laboratory insect population , 1988 .

[109]  Stuart L. Pimm,et al.  The variability of population densities , 1988, Nature.

[110]  Tang,et al.  Self-organized criticality. , 1988, Physical review. A, General physics.

[111]  Tang,et al.  Critical exponents and scaling relations for self-organized critical phenomena. , 1988, Physical review letters.

[112]  Hao Bai-lin Elementary Symbolic Dynamics , 1988 .

[113]  The Wave Function of a Collapsing Dust Sphere inside the Black Hole Horizon , 1988 .

[114]  D M Raup,et al.  Patterns of generic extinction in the fossil record , 1988, Paleobiology.

[115]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[116]  S. Kauffman,et al.  Towards a general theory of adaptive walks on rugged landscapes. , 1987, Journal of theoretical biology.

[117]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[118]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[119]  Bruce J. West,et al.  Fractals in physiology and medicine. , 1987, The Yale journal of biology and medicine.

[120]  R. Harrison,et al.  Chaos in light , 1986, Nature.

[121]  D. Raup Biological extinction in earth history. , 1986, Science.

[122]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[123]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[124]  John H. Steele,et al.  A comparison of terrestrial and marine ecological systems , 1985, Nature.

[125]  J. Changeux Neuronal man : the biology of mind , 1985 .

[126]  K. Falconer The geometry of fractal sets , 1985 .

[127]  K. Falconer The geometry of fractal sets: Contents , 1985 .

[128]  Y. Aizawa,et al.  Statistical Mechanics of Intermittent Chaos ƒ−νSpectral Behaviors of the Semi-Markovian Class , 1984 .

[129]  D. Raup,et al.  Periodicity of extinctions in the geologic past. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[130]  Heinz Georg Schuster,et al.  Functional renormalization-group theory of universal1fnoise in dynamical systems , 1983 .

[131]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[132]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[133]  E. Berlekamp,et al.  Winning Ways for Your Mathematical Plays , 1983 .

[134]  Sewall Wright,et al.  CHARACTER CHANGE, SPECIATION, AND THE HIGHER TAXA , 1982, Evolution; international journal of organic evolution.

[135]  S. Fauve,et al.  Period doubling cascade in mercury, a quantitative measurement , 1982 .

[136]  D. Raup,et al.  Mass Extinctions in the Marine Fossil Record , 1982, Science.

[137]  L. Glass,et al.  Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells. , 1981, Science.

[138]  E R Weibel,et al.  Resolution effect on the stereological estimation of surface and volume and its interpretation in terms of fractal dimensions , 1981, Journal of microscopy.

[139]  Paul Manneville,et al.  Intermittency, self-similarity and 1/f spectrum in dissipative dynamical systems , 1980 .

[140]  M. Feigenbaum The universal metric properties of nonlinear transformations , 1979 .

[141]  K. Wilson Problems in Physics with many Scales of Length , 1979 .

[142]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[143]  Leo P. Kadanoff,et al.  Teaching the Renormalization Group. , 1978 .

[144]  W. Press Flicker noises in astronomy and elsewhere. , 1978 .

[145]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[146]  I. Good,et al.  Fractals: Form, Chance and Dimension , 1978 .

[147]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[148]  R. Voss,et al.  ‘1/fnoise’ in music and speech , 1975, Nature.

[149]  D. Kellogg The role of phyletic change in the evolution of Pseudocubus vema (Radiolaria) , 1975, Paleobiology.

[150]  A. A. Verveen,et al.  1/f noise with a low frequency white noise limit , 1974, Nature.

[151]  A. Kristofferson,et al.  The timing of interresponse intervals , 1973 .

[152]  A. Rowell,et al.  Models in Paleobiology , 1973 .

[153]  M. Campbell,et al.  Cyclic Changes in Insulin Needs of an Unstable Diabetic , 1972, Science.

[154]  T. Schopf Models in Paleobiology , 1972 .

[155]  Barruquer Moner IX. References , 1971 .

[156]  Master Gardener,et al.  Mathematical games: the fantastic combinations of john conway's new solitaire game "life , 1970 .

[157]  E. H. Lloyd,et al.  Long-Term Storage: An Experimental Study. , 1966 .

[158]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[159]  Mark Bartlett,et al.  The Critical Community Size for Measles in the United States , 1960 .

[160]  S. Utida Cyclic Fluctuations of Population Density Intrinsic to the Host-Parasite System , 1957 .

[161]  J. Hammersley,et al.  Percolation processes , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[162]  A. Nicholson,et al.  The Self-Adjustment of Populations to Change , 1957 .

[163]  M. Bartlett Measles Periodicity and Community Size , 1957 .

[164]  B. Gutenberg,et al.  Magnitude and Energy of Earthquakes , 1936, Nature.

[165]  H. E. Hurst,et al.  Long-Term Storage Capacity of Reservoirs , 1951 .

[166]  B. Gutenberg,et al.  Seismicity of the Earth and associated phenomena , 1950, MAUSAM.

[167]  George Kingsley Zipf,et al.  Human behavior and the principle of least effort , 1949 .

[168]  A. Einstein,et al.  The Evolution of Physics: The Growth of Ideas from the Early Concepts to Relativity and Quanta , 1938 .