Modeling, analysis and simulation on searching for global optimum region of particle swarm optimization

In the case of particle swarm optimization, this paper mainly analyzes and discusses the mathematical model and the analysis on searching for the global optimum region. Firstly, the global optimum region Θ is defined and calculated in the convergence step and the divergence step. Furthermore, the rate μ of locating into the global optimum region is mathematically related to the number of particles, the number of generations, the fitness landscape, the ratio between exploration ability and exploitation ability, etc. Simulation results on Schaffer f6 function can help to understand the obtained results. Finally, those corresponding results and several remarks in the paper are helpful for the tradeoff between exploration ability and exploitation ability, together with the suitable searching strategy of particle swarm optimization algorithm.

[1]  Shiyuan Yang,et al.  Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm , 2007, Inf. Process. Lett..

[2]  Riccardo Poli,et al.  Mean and Variance of the Sampling Distribution of Particle Swarm Optimizers During Stagnation , 2009, IEEE Transactions on Evolutionary Computation.

[3]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[4]  Alfredo Pironti,et al.  Path Generation and Tracking in 3-D for UAVs , 2009, IEEE Transactions on Control Systems Technology.

[5]  Jürgen Branke,et al.  Multiswarms, exclusion, and anti-convergence in dynamic environments , 2006, IEEE Transactions on Evolutionary Computation.

[6]  Xuemei Ren,et al.  A new joint spectral radius analysis of random PSO algorithm , 2014, Int. J. Comput. Intell. Syst..

[7]  M. A. Abido,et al.  Optimal power flow using particle swarm optimization , 2002 .

[8]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[9]  E. Ozcan,et al.  Particle swarm optimization: surfing the waves , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[10]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[11]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[12]  Jun Zhang,et al.  SamACO: Variable Sampling Ant Colony Optimization Algorithm for Continuous Optimization , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[13]  Jun Zhang,et al.  A Novel Set-Based Particle Swarm Optimization Method for Discrete Optimization Problems , 2010, IEEE Transactions on Evolutionary Computation.

[14]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[15]  Andries Petrus Engelbrecht,et al.  A study of particle swarm optimization particle trajectories , 2006, Inf. Sci..

[16]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[17]  Eva Besada Portas,et al.  Evolutionary trajectory planner for multiple UAVs in realistic scenarios , 2010 .

[18]  Xuemei Ren,et al.  Adaptive swarm optimization for locating and tracking multiple targets , 2012, Appl. Soft Comput..

[19]  Milan R. Rapaic,et al.  Time-varying PSO - convergence analysis, convergence-related parameterization and new parameter adjustment schemes , 2009, Inf. Process. Lett..

[20]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[21]  Visakan Kadirkamanathan,et al.  Stability analysis of the particle dynamics in particle swarm optimizer , 2006, IEEE Transactions on Evolutionary Computation.

[22]  Chilukuri K. Mohan,et al.  Analysis of a simple particle swarm optimization system , 1998 .

[23]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .