Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications

Abstract. Organo-metal halide perovskite–based solar cells have been the focus of intense research over the past five years, and power conversion efficiencies have rapidly been improved from 3.8 to >21%. This article reviews major advances in perovskite solar cells that have contributed to the recent efficiency enhancements, including the evolution of device architecture, the development of material deposition processes, and the advanced device engineering techniques aiming to improve control over morphology, crystallinity, composition, and the interface properties of the perovskite thin films. The challenges and future directions for perovskite solar cell research and development are also discussed.

[1]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .

[2]  David Cahen,et al.  Rain on Methylammonium Lead Iodide Based Perovskites: Possible Environmental Effects of Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[3]  M. Kanatzidis,et al.  Controllable perovskite crystallization at a gas-solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. , 2014, Journal of the American Chemical Society.

[4]  Kai Zhu,et al.  Annealing-free efficient vacuum-deposited planar perovskite solar cells with evaporated fullerenes as electron-selective layers , 2016 .

[5]  Jae Woong Jung,et al.  A Low‐Temperature, Solution‐Processable, Cu‐Doped Nickel Oxide Hole‐Transporting Layer via the Combustion Method for High‐Performance Thin‐Film Perovskite Solar Cells , 2015, Advanced materials.

[6]  Pierluigi Cossari,et al.  Perovskite photovoltachromic cells for building integration , 2015 .

[7]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[8]  Yanlin Song,et al.  Inkjet printing of CH3NH3PbI3 on a mesoscopic TiO2 film for highly efficient perovskite solar cells , 2015 .

[9]  D. Ginger,et al.  Impact of microstructure on local carrier lifetime in perovskite solar cells , 2015, Science.

[10]  Jun Mei,et al.  Low-temperature, solution processed metal sulfide as an electron transport layer for efficient planar perovskite solar cells , 2015 .

[11]  Juan Bisquert,et al.  Mechanism of carrier accumulation in perovskite thin-absorber solar cells , 2013, Nature Communications.

[12]  Ling Wang,et al.  Low temperature solution processed planar heterojunction perovskite solar cells with a CdSe nanocrystal as an electron transport/extraction layer , 2014 .

[13]  Yaohua Mai,et al.  Controllable Grain Morphology of Perovskite Absorber Film by Molecular Self-Assembly toward Efficient Solar Cell Exceeding 17%. , 2015, Journal of the American Chemical Society.

[14]  Qi Chen,et al.  Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. , 2016, Nature nanotechnology.

[15]  Martijn Kemerink,et al.  Modeling Anomalous Hysteresis in Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[16]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[17]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[18]  Qingfeng Dong,et al.  Giant switchable photovoltaic effect in organometal trihalide perovskite devices. , 2015, Nature materials.

[19]  Yixin Zhao,et al.  Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[20]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[21]  Peng Gao,et al.  Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. , 2014, Angewandte Chemie.

[22]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[23]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[24]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[25]  Mohammad Khaja Nazeeruddin,et al.  Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. , 2015, Nature chemistry.

[26]  Benjamin G. Penn,et al.  Perovskites: transforming photovoltaics, a mini-review , 2015 .

[27]  B. Rech,et al.  Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature , 2016 .

[28]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[29]  Suneth C. Watthage,et al.  Impact of Processing Temperature and Composition on the Formation of Methylammonium Lead Iodide Perovskites , 2015 .

[30]  Mohammad Khaja Nazeeruddin,et al.  Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell , 2014, Nature Communications.

[31]  Yongseok Jun,et al.  Efficient, durable and flexible perovskite photovoltaic devices with Ag-embedded ITO as the top electrode on a metal substrate , 2015 .

[32]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[33]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[34]  Kai Zhu,et al.  Ferroelectric solar cells based on inorganic-organic hybrid perovskites , 2015 .

[35]  Jeffrey A. Christians,et al.  An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. , 2014, Journal of the American Chemical Society.

[36]  M. Grätzel The light and shade of perovskite solar cells. , 2014, Nature materials.

[37]  David B. Mitzi,et al.  Thin Film Deposition of Organic−Inorganic Hybrid Materials Using a Single Source Thermal Ablation Technique , 1999 .

[38]  Kai Zhu,et al.  Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3PbI2Br nanosheets via thermal decomposition. , 2014, Journal of the American Chemical Society.

[39]  H. Yang,et al.  Thermal-Induced Volmer–Weber Growth Behavior for Planar Heterojunction Perovskites Solar Cells , 2015 .

[40]  Leone Spiccia,et al.  Ultra-thin high efficiency semitransparent perovskite solar cells , 2015 .

[41]  David B. Mitzi,et al.  Organic-inorganic electronics , 2001, IBM J. Res. Dev..

[42]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[43]  J. Coleman,et al.  Liquid Exfoliation of Layered Materials , 2013, Science.

[44]  H. Snaith,et al.  Non-ferroelectric nature of the conductance hysteresis in CH3NH3PbI3 perovskite-based photovoltaic devices , 2015, 1504.05454.

[45]  Xiaohao Yang,et al.  Structure of methylammonium lead iodide within mesoporous titanium dioxide: active material in high-performance perovskite solar cells. , 2014, Nano letters.

[46]  Laura L. Kosbar,et al.  Structurally Tailored Organic−Inorganic Perovskites: Optical Properties and Solution-Processed Channel Materials for Thin-Film Transistors , 2001 .

[47]  T. Ma,et al.  CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm. , 2014, The journal of physical chemistry letters.

[48]  Tobin J Marks,et al.  Solvent-Mediated Crystallization of CH3NH3SnI3 Films for Heterojunction Depleted Perovskite Solar Cells. , 2015, Journal of the American Chemical Society.

[49]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[50]  Xudong Yang,et al.  Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells , 2015 .

[51]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[52]  Christophe Ballif,et al.  Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. , 2014, The journal of physical chemistry letters.

[53]  Alain Goriely,et al.  Recombination Kinetics in Organic-Inorganic Perovskites: Excitons, Free Charge, and Subgap States , 2014 .

[54]  E. Alarousu,et al.  Perovskite Oxide SrTiO3 as an Efficient Electron Transporter for Hybrid Perovskite Solar Cells , 2014 .

[55]  Guglielmo Lanzani,et al.  Excitons versus free charges in organo-lead tri-halide perovskites , 2014, Nature Communications.

[56]  Trystan Watson,et al.  Observable Hysteresis at Low Temperature in “Hysteresis Free” Organic–Inorganic Lead Halide Perovskite Solar Cells , 2015 .

[57]  Kun Zhang,et al.  Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition , 2014 .

[58]  Yossi Rosenwaks,et al.  Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). , 2014, Nano letters.

[59]  C. S. Fuller,et al.  A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power , 1954 .

[60]  Mohammad Khaja Nazeeruddin,et al.  Organohalide lead perovskites for photovoltaic applications , 2014 .

[61]  Yanhong Luo,et al.  Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property , 2014 .

[62]  C. Ballif,et al.  Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells. , 2015, Physical chemistry chemical physics : PCCP.

[63]  Henk J. Bolink,et al.  Flexible high efficiency perovskite solar cells , 2014 .

[64]  S. Hsiao,et al.  Efficient and Uniform Planar‐Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition , 2014, Advanced materials.

[65]  David Worsley,et al.  A Transparent Conductive Adhesive Laminate Electrode for High‐Efficiency Organic‐Inorganic Lead Halide Perovskite Solar Cells , 2014, Advanced materials.

[66]  Thomas Feurer,et al.  High-Efficiency Polycrystalline Thin Film Tandem Solar Cells. , 2015, The journal of physical chemistry letters.

[67]  Konrad Wojciechowski,et al.  Highly efficient, flexible, indium-free perovskite solar cells employing metallic substrates , 2015 .

[68]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[69]  Henk J. Bolink,et al.  Perovskite solar cells join the major league , 2015, Science.

[70]  Nam-Gyu Park,et al.  11% Efficient Perovskite Solar Cell Based on ZnO Nanorods: An Effective Charge Collection System , 2014 .

[71]  Lydia Helena Wong,et al.  TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode , 2015 .

[72]  Kangning Liang,et al.  Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique , 1998 .

[73]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[74]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[75]  Heng Li,et al.  Hysteresis Analysis Based on the Ferroelectric Effect in Hybrid Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[76]  Tae Kyu Ahn,et al.  Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency , 2015 .

[77]  Mohammad Khaja Nazeeruddin,et al.  Outdoor Performance and Stability under Elevated Temperatures and Long‐Term Light Soaking of Triple‐Layer Mesoporous Perovskite Photovoltaics , 2015 .

[78]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[79]  Mohammad Khaja Nazeeruddin,et al.  Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field , 2015 .

[80]  Jin He,et al.  Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method , 2015, Scientific Reports.

[81]  H. Tao,et al.  Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells , 2015, Nature Communications.

[82]  Jean-Pierre Wolf,et al.  Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. , 2014, Journal of the American Chemical Society.

[83]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[84]  Aron Walsh,et al.  Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells , 2014, 1405.5810.

[85]  Jinli Yang,et al.  Compact layer free perovskite solar cells with 13.5% efficiency. , 2014, Journal of the American Chemical Society.

[86]  Sandeep Kumar Pathak,et al.  Lead-free organic–inorganic tin halide perovskites for photovoltaic applications , 2014 .

[87]  Jinsong Huang,et al.  Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process , 2014 .

[88]  Zong-Liang Tseng,et al.  High efficiency stable inverted perovskite solar cells without current hysteresis , 2015 .

[89]  Nam-Gyu Park,et al.  Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. , 2014, Nature nanotechnology.

[90]  Mohammad Khaja Nazeeruddin,et al.  Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency , 2014, Nature Communications.

[91]  Jinsong Huang,et al.  Solvent Annealing of Perovskite‐Induced Crystal Growth for Photovoltaic‐Device Efficiency Enhancement , 2014, Advanced materials.

[92]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[93]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[94]  Gautam Gupta,et al.  Optimizing Composition and Morphology for Large-Grain Perovskite Solar Cells via Chemical Control , 2015 .

[95]  John Wang,et al.  Ferroelectricity of CH3NH3PbI3 Perovskite. , 2015, The journal of physical chemistry letters.

[96]  Mohammad Khaja Nazeeruddin,et al.  Predicting the Open‐Circuit Voltage of CH3NH3PbI3 Perovskite Solar Cells Using Electroluminescence and Photovoltaic Quantum Efficiency Spectra: the Role of Radiative and Non‐Radiative Recombination , 2015 .

[97]  Tzung-Fang Guo,et al.  CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells , 2013, Advanced materials.

[98]  Martin A. Green,et al.  Solar cell efficiency tables (version 47) , 2016 .

[99]  Hyun Suk Jung,et al.  Highly efficient and bending durable perovskite solar cells: toward a wearable power source , 2015 .

[100]  Jinsong Huang,et al.  Abnormal crystal growth in CH3NH3PbI3−xClx using a multi-cycle solution coating process , 2015 .

[101]  H. Ohkita,et al.  Photovoltaic Performance of Perovskite Solar Cells with Different Grain Sizes , 2016, Advanced materials.

[102]  Yu-Cheng Chang,et al.  p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells , 2014, Scientific Reports.

[103]  Suneth C. Watthage,et al.  Spatially resolved characterization of solution processed perovskite solar cells using the LBIC technique , 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC).

[104]  Reinhard Schwödiauer,et al.  Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. , 2015, Nature Materials.

[105]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[106]  Jinsong Huang,et al.  Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers , 2015 .

[107]  Eric T. Hoke,et al.  Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells , 2014 .

[108]  Leone Spiccia,et al.  A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. , 2014, Angewandte Chemie.

[109]  M. Nazeeruddin,et al.  High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursors , 2015 .

[110]  David B. Mitzi,et al.  Electroluminescence from an Organic−Inorganic Perovskite Incorporating a Quaterthiophene Dye within Lead Halide Perovskite Layers , 1999 .

[111]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[112]  Lioz Etgar,et al.  Depleted hole conductor-free lead halide iodide heterojunction solar cells , 2013 .

[113]  Alberto Salleo,et al.  Semi-transparent perovskite solar cells for tandems with silicon and CIGS , 2015 .

[114]  Alan D. F. Dunbar,et al.  Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition , 2014 .

[115]  Yang Yang,et al.  Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications , 2015 .

[116]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[117]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[118]  H. Snaith,et al.  The Importance of Perovskite Pore Filling in Organometal Mixed Halide Sensitized TiO2-Based Solar Cells. , 2014, The journal of physical chemistry letters.

[119]  Dae Ho Song,et al.  Planar CH3NH3PbBr3 Hybrid Solar Cells with 10.4% Power Conversion Efficiency, Fabricated by Controlled Crystallization in the Spin‐Coating Process , 2014, Advanced materials.

[120]  Andrew C. Grimsdale,et al.  Perovskite-based solar cells: impact of morphology and device architecture on device performance , 2015 .

[121]  Licheng Sun,et al.  Recent Progress on Hole‐Transporting Materials for Emerging Organometal Halide Perovskite Solar Cells , 2015 .

[122]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[123]  Yang Yang,et al.  Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process , 2015 .

[124]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[125]  Mohammad Khaja Nazeeruddin,et al.  Organohalide Lead Perovskites for Photovoltaic Applications. , 2016, The journal of physical chemistry letters.

[126]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[127]  Laura M Herz,et al.  High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites , 2013, Advanced materials.

[128]  Robert P. H. Chang,et al.  Lead-free solid-state organic–inorganic halide perovskite solar cells , 2014, Nature Photonics.

[129]  Fan Zuo,et al.  Additive Enhanced Crystallization of Solution‐Processed Perovskite for Highly Efficient Planar‐Heterojunction Solar Cells , 2014, Advanced materials.

[130]  Nam-Gyu Park,et al.  Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. , 2014, The journal of physical chemistry letters.

[131]  Henry J Snaith,et al.  Metal-halide perovskites for photovoltaic and light-emitting devices. , 2015, Nature nanotechnology.

[132]  Yanfa Yan,et al.  Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber , 2014 .

[133]  David B. Mitzi,et al.  Synthesis, Crystal Structure, and Optical and Thermal Properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb) , 1996 .

[134]  Paul L. Burn,et al.  Electro-optics of perovskite solar cells , 2014, Nature Photonics.

[135]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[136]  Jianbin Xu,et al.  Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. , 2015, Journal of the American Chemical Society.

[137]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[138]  Nam-Gyu Park,et al.  Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. , 2015, Journal of the American Chemical Society.

[139]  Meng Zhang,et al.  Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. , 2015, Nano letters.

[140]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[141]  Aldo Di Carlo,et al.  Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV‐Irradiated TiO2 Scaffolds on Plastic Substrates , 2015 .

[142]  M. Johnston,et al.  Highly Efficient Perovskite Solar Cells with Tunable Structural Color , 2015, Nano letters.

[143]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[144]  Juan Bisquert,et al.  Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. , 2013, Nano letters.

[145]  Jegadesan Subbiah,et al.  Toward Large Scale Roll‐to‐Roll Production of Fully Printed Perovskite Solar Cells , 2015, Advanced materials.

[146]  Tae-Woo Lee,et al.  Planar CH3NH3PbI3 Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate , 2015, Advanced materials.

[147]  Jonathan P. Mailoa,et al.  A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction , 2015 .

[148]  Richard L. Harlow,et al.  Preparation and characterization of layered lead halide compounds , 1991 .

[149]  Yani Chen,et al.  Non-Thermal Annealing Fabrication of Efficient Planar Perovskite Solar Cells with Inclusion of NH4Cl , 2015 .

[150]  Tomas Leijtens,et al.  Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. , 2014, Nano letters.

[151]  A. Belcher,et al.  Environmentally responsible fabrication of efficient perovskite solar cells from recycled car batteries , 2014 .

[152]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[153]  Alain Goriely,et al.  High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization , 2015, Nature Communications.

[154]  Yunlong Li,et al.  CuSCN-Based Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%. , 2015, Nano letters.

[155]  Michael Grätzel,et al.  Highly efficient planar perovskite solar cells through band alignment engineering , 2015 .

[156]  Juan Bisquert,et al.  Polarization Switching and Light-Enhanced Piezoelectricity in Lead Halide Perovskites. , 2015, The journal of physical chemistry letters.

[157]  Erik M. J. Johansson,et al.  Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures , 2013 .

[158]  Tomas Leijtens,et al.  Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility. , 2014, ACS nano.

[159]  H. Hillhouse,et al.  Enhanced Carrier Lifetimes of Pure Iodide Hybrid Perovskite via Vapor-Equilibrated Re-Growth (VERG). , 2015, The journal of physical chemistry letters.

[160]  R. Service,et al.  Energy technology. Perovskite solar cells keep on surging. , 2014, Science.

[161]  Wei Chen,et al.  Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers , 2015, Science.

[162]  Tingting Shi,et al.  Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance , 2014, Advanced materials.

[163]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[164]  Yixin Zhao,et al.  Controllable Sequential Deposition of Planar CH₃NH₃PbI₃ Perovskite Films via Adjustable Volume Expansion. , 2015, Nano letters.

[165]  Michael J. Heben,et al.  Investigation of degradation mechanisms of perovskite-based photovoltaic devices using laser beam induced current mapping , 2015, SPIE Optics + Photonics for Sustainable Energy.

[166]  Hongwei Lei,et al.  Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. , 2015, Journal of the American Chemical Society.

[167]  Nripan Mathews,et al.  Advancements in perovskite solar cells: photophysics behind the photovoltaics , 2014 .

[168]  Frederik C. Krebs,et al.  Solution and vapour deposited lead perovskite solar cells: Ecotoxicity from a life cycle assessment perspective , 2015 .

[169]  C. Ballif,et al.  Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm(2). , 2016, The journal of physical chemistry letters.

[170]  Henry J. Snaith,et al.  Stability of Metal Halide Perovskite Solar Cells , 2015 .

[171]  Alain Goriely,et al.  Neutral color semitransparent microstructured perovskite solar cells. , 2014, ACS nano.