Cutting dynamics and surface quality

[1]  Gábor Stépán,et al.  Global dynamics of low immersion high-speed milling. , 2004, Chaos.

[2]  Keith A. Young,et al.  Simultaneous Stability and Surface Location Error Predictions in Milling , 2005 .

[3]  Michael E. Henderson,et al.  Multiple Parameter Continuation: Computing Implicitly Defined k-Manifolds , 2002, Int. J. Bifurc. Chaos.

[4]  Dong-Soo Kwon,et al.  REAL-TIME ACCELEROMETER SIGNAL PROCESSING OF END POINT DETECTION AND FEATURE EXTRACTION FOR MOTION DETECTION , 2007 .

[5]  T. Tél,et al.  Chaotic Dynamics: An Introduction Based on Classical Mechanics , 2006 .

[6]  C. Sparrow The Fractal Geometry of Nature , 1984 .

[7]  Zoltan Dombovari,et al.  On the Global Dynamics of Chatter in the Orthogonal Cutting Model , 2011 .

[8]  T. Schmitz,et al.  Machining Dynamics: Frequency Response to Improved Productivity , 2008 .

[9]  Yusuf Altintas,et al.  Mechanism of Cutting Force and Surface Generation in Dynamic Milling , 1991 .

[10]  Gábor Stépán,et al.  Approximate stability charts for milling processes using semi-discretization , 2006, Appl. Math. Comput..

[11]  Gábor Stépán,et al.  Machine Tool Chatter and Surface Quality in Milling Processes , 2004 .

[12]  S. A. Tobias,et al.  Theory of finite amplitude machine tool instability , 1984 .

[13]  Steven Y. Liang,et al.  Cutting forces modeling considering the effect of tool thermal property—application to CBN hard turning , 2003 .

[14]  Gábor Stépán,et al.  Stability Analysis of Turning With Periodic Spindle Speed Modulation Via Semidiscretization , 2004 .

[15]  G. Stépán,et al.  Optimális axiális fogásmélység csavart élű marószerszámra frekvencia átviteli függvény alkalmazásával , 2010 .

[16]  Ferenc Hartung,et al.  Linearized stability in periodic functional differential equations with state-dependent delays , 2005 .

[17]  Gábor Stépán,et al.  Semi-Discretization for Time-Delay Systems: Stability and Engineering Applications , 2011 .

[18]  Tony L. Schmitz,et al.  Three-Component Receptance Coupling Substructure Analysis for Tool Point Dynamics Prediction , 2005 .

[19]  Neal Grandgenett,et al.  Mathematica Version 6 , 2007 .

[20]  B. Denkena,et al.  Model based reconstruction of milled surface topography from measured cutting forces , 2012 .

[21]  S. A. Tobias Machine-tool vibration , 1965 .

[22]  B. Mandelbrot How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension , 1967, Science.

[23]  Yusuf Altintas,et al.  Cutting force and dimensional surface error generation in peripheral milling with variable pitch helical end mills , 1996 .

[24]  F. W. Taylor The Art of Cutting Metals , 1907 .

[25]  T. Insperger,et al.  Analysis of the Influence of Mill Helix Angle on Chatter Stability , 2006 .

[26]  Gbor Stpn Modelling nonlinear regenerative effects in metal cutting , 2001 .

[27]  Klaus Weinert,et al.  Mechanistic identification of specific force coefficients for a general end mill , 2004 .

[28]  Alex Iglesias,et al.  Prediction of multiple dominant chatter frequencies in milling processes , 2011 .

[29]  Gábor Stépán,et al.  State Dependent Regenerative Delay in Milling Processes , 2005 .

[30]  Gábor Stépán,et al.  SEMI-DISCRETIZATION OF DELAYED DYNAMICAL SYSTEMS , 2001 .

[31]  Gábor Stépán,et al.  On stability prediction for milling , 2005 .

[32]  D. Bachrathy,et al.  Bisection method in higher dimensions and the efficiency number , 2012 .

[33]  Gábor Stépán,et al.  Increased stability of low-speed turning through a distributed force and continuous delay model , 2009 .

[34]  Marta J. Reith,et al.  Optimal cutting speeds and surface prediction in interrupted high precision hard turning , 2010 .

[35]  Tian Huang,et al.  Simulation and experimental investigation of the end milling process considering the cutter flexibility , 2003 .

[36]  Gábor Stépán,et al.  Surface location error for helical mills , 2006 .

[37]  Yusuf Altintas,et al.  Prediction of Milling Force Coefficients From Orthogonal Cutting Data , 1996 .

[38]  Gábor Stépán,et al.  Nonlinear Dynamics of High-Speed Milling—Analyses, Numerics, and Experiments , 2005 .

[39]  Gábor Stépán,et al.  Machine Tool Chatter and Surface Location Error in Milling Processes , 2006 .

[40]  Gábor Stépán,et al.  Stability of up-milling and down-milling, part 1: alternative analytical methods , 2003 .

[41]  E. Govekar,et al.  ON STABILITY PREDICTION FOR LOW RADIAL IMMERSION MILLING , 2005 .

[42]  Gábor Stépán,et al.  Semi‐discretization method for delayed systems , 2002 .

[43]  Gábor Stépán,et al.  Improved prediction of stability lobes with extended multi frequency solution , 2013 .

[44]  Gábor Stépán,et al.  On the higher-order semi-discretizations for periodic delayed systems , 2008 .

[45]  Jing Yang,et al.  Analysis and compensation of errors in the input device based on inertial sensors , 2004, International Conference on Information Technology: Coding and Computing, 2004. Proceedings. ITCC 2004..

[46]  Gábor Stépán,et al.  Stability of up-milling and down-milling, part 2: experimental verification , 2003 .

[47]  Dirk Roose,et al.  Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL , 2002, TOMS.

[48]  Steven Y. Liang,et al.  Analysis of tool wear effect on chatter stability in turning , 1995 .

[49]  T. Vicsek Fractal Growth Phenomena , 1989 .

[50]  R. D. Henshell,et al.  A Timoshenko beam element , 1972 .

[51]  Alexander F. Vakakis,et al.  Nonlinear normal modes, Part I: A useful framework for the structural dynamicist , 2009 .

[52]  Gábor Stépán,et al.  State dependent regenerative effect in milling processes , 2011 .

[53]  Gábor Stépán,et al.  Updated semi‐discretization method for periodic delay‐differential equations with discrete delay , 2004 .

[54]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[55]  Zoltan Dombovari,et al.  The effect of serration on mechanics and stability of milling cutters , 2010 .

[56]  D. Bachrathy,et al.  Efficient Stability Chart Computation for General Delayed Linear Time Periodic Systems , 2013 .

[57]  Takashi Yokoyama,et al.  Vibrations of a hanging Timoshenko beam under gravity , 1990 .

[58]  Henk Nijmeijer,et al.  UPDATED TOOL PATH MODELLING WITH PERIODIC DELAY FOR CHATTER PREDICTION IN MILLING. , 2005 .

[59]  Gábor Stépán,et al.  Stability of High-Speed Milling , 2000, Nonlinear Dynamics and Stochastic Mechanics.

[60]  S. A. Tobias,et al.  The relation between the static and the dynamic cutting of metals , 1967 .

[61]  Y. Kevin Chou,et al.  Cubic boron nitride tool wear in interrupted hard cutting , 1999 .

[62]  Dietmar Saupe,et al.  Efficient computation of Julia sets and their fractal dimension , 1987 .

[63]  Stephen P. Timoshenko,et al.  Vibration problems in engineering , 1928 .

[64]  Dénes Takács Dynamics of towed wheels: nonlinear theory and experiments , 2010 .

[65]  G. Samaey,et al.  DDE-BIFTOOL v. 2.00: a Matlab package for bifurcation analysis of delay differential equations , 2001 .

[66]  Chinedum E. Okwudire,et al.  Hybrid Modeling of Ball Screw Drives With Coupled Axial, Torsional, and Lateral Dynamics , 2009 .

[67]  Gábor Stépán,et al.  SURFACE PROPERTIES OF THE MACHINED WORKPIECE FOR HELICAL MILLS , 2009 .

[68]  Yusuf Altintas,et al.  Mechanics and dynamics of general milling cutters.: Part I: helical end mills , 2001 .

[70]  David J. Ewins,et al.  Modal Testing: Theory, Practice, And Application , 2000 .

[71]  Tamás Kalmár-Nagy,et al.  Delay differential equations : recent advances and new directions , 2009 .

[72]  Balakumar Balachandran,et al.  Nonlinear dynamics of milling processes , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[73]  B. Verő,et al.  Material Structural Aspects of Micro-Scale Chip Removal , 2002 .

[74]  Lutfi Taner Tunc,et al.  A New Method for Identification and Modeling of Process Damping in Machining , 2009 .

[75]  Gábor Stépán,et al.  Lobes and Lenses in the Stability Chart of Interrupted Turning , 2006 .

[76]  Yusuf Altintas,et al.  Chatter Stability of General Turning Operations With Process Damping , 2009 .

[77]  Tony L. Schmitz,et al.  Examination of surface location error due to phasing of cutter vibrations , 1999 .

[78]  Gaëtan Kerschen,et al.  Nonlinear normal modes, Part II: Toward a practical computation using numerical continuation techniques , 2009 .

[79]  Yusuf Altintas,et al.  Identification of dynamic cutting force coefficients and chatter stability with process damping , 2008 .

[80]  Mark Richardson,et al.  PARAMETER ESTIMATION FROM FREQUENCY RESPONSE MEASUREMENTS USING RATIONAL FRACTION POLYNOMIALS (TWENTY YEARS OF PROGRESS) , 1982 .

[81]  Lutfi Taner Tunc,et al.  Identification and modeling of process damping in turning and milling using a new approach , 2010 .

[82]  René Mayer,et al.  Surface shape prediction in high speed milling , 2004 .

[83]  D. William Wu,et al.  Application of a comprehensive dynamic cutting force model to orthogonal wave-generating processes , 1988 .

[84]  R. E. Wilson,et al.  Estimates of the bistable region in metal cutting , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[85]  S. A. Tobias,et al.  The Chatter of Lathe Tools Under Orthogonal Cutting Conditions , 1958, Journal of Fluids Engineering.