N‐Rich Solid Electrolyte Interface Constructed In Situ Via a Binder Strategy for Highly Stable Silicon Anode

[1]  W. Peukert,et al.  Emerging Organic Surface Chemistry for Si Anodes in Lithium‐Ion Batteries: Advances, Prospects, and Beyond , 2022, Advanced Energy Materials.

[2]  G. Ungar,et al.  Gradient H‐Bonding Binder Enables Stable High‐Areal‐Capacity Si‐Based Anodes in Pouch Cells , 2021, Advanced materials.

[3]  J. Tarascon,et al.  Unraveling the mechanical origin of stable solid electrolyte interphase , 2021, Joule.

[4]  Feng Li,et al.  Challenges and Recent Progress on Silicon‐Based Anode Materials for Next‐Generation Lithium‐Ion Batteries , 2021, Small Structures.

[5]  Huamin Zhang,et al.  Endogenous Symbiotic Li3N / Cellulose Skin to Extend the Cycle Life of Lithium Anode. , 2021, Angewandte Chemie.

[6]  Erik A. Wu,et al.  Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes , 2021, Science.

[7]  Jingwei Xiang,et al.  Elevated Lithium Ion Regulation by a “Natural Silk” Modified Separator for High‐Performance Lithium Metal Anode , 2021, Advanced Functional Materials.

[8]  Jiaqi Huang,et al.  A review on the failure and regulation of solid electrolyte interphase in lithium batteries , 2020, Journal of Energy Chemistry.

[9]  Shizhao Xiong,et al.  Highly Energy‐Dissipative, Fast Self‐Healing Binder for Stable Si Anode in Lithium‐Ion Batteries , 2020, Advanced Functional Materials.

[10]  Wei Weng,et al.  Template‐Free Electrochemical Formation of Silicon Nanotubes from Silica , 2020, Advanced science.

[11]  M. Guiver,et al.  Unobstructed Ultrathin Gas Transport Channels in Composite Membranes by Interfacial Self‐Assembly , 2020, Advanced materials.

[12]  Jaephil Cho,et al.  Integration of Graphite and Silicon Anodes for the Commercialization of High-Energy Lithium-Ion Batteries. , 2020, Angewandte Chemie.

[13]  R. Stolkin,et al.  Recycling lithium-ion batteries from electric vehicles , 2019, Nature.

[14]  David G. Mackanic,et al.  Designing polymers for advanced battery chemistries , 2019, Nature Reviews Materials.

[15]  Dingcai Wu,et al.  Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes , 2019, Nature Communications.

[16]  Hong Jin,et al.  In Situ Synthesis of Multilayer Carbon Matrix Decorated with Copper Particles: Enhancing the Performance of Si as Anode for Li-Ion Batteries. , 2019, ACS nano.

[17]  Jun Lu,et al.  High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries , 2018, Electrochemical Energy Reviews.

[18]  Sen Xin,et al.  Rational design of Si@carbon with robust hierarchically porous custard-apple-like structure to boost lithium storage , 2017 .

[19]  Jixiao Wang,et al.  Polymeric composite membrane fabricated by 2-aminoterephthalic acid chemically cross-linked polyvinylamine for CO2 separation under high temperature , 2016 .

[20]  Jong Won Chung,et al.  A Stretchable Graphitic Carbon/Si Anode Enabled by Conformal Coating of a Self‐Healing Elastic Polymer , 2016, Advanced materials.

[21]  Z. Wen,et al.  Vinylene carbonate–LiNO3: A hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode , 2015 .

[22]  H. Zhong,et al.  Carboxymethyl chitosan: A new water soluble binder for Si anode of Li-ion batteries , 2014 .

[23]  Zhenan Bao,et al.  Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles , 2013, Nature Communications.

[24]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[25]  Jixiao Wang,et al.  Improvement of CO2/N2 separation characteristics of polyvinylamine by modifying with ethylenediamine , 2011 .

[26]  Heechul Jung,et al.  Nanosize Si anode embedded in super-elastic nitinol (Ni–Ti) shape memory alloy matrix for Li rechargeable batteries , 2011 .

[27]  J. Tarascon,et al.  Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries , 2010 .

[28]  N. Choi,et al.  Enhanced electrochemical properties of a Si-based anode using an electrochemically active polyamide imide binder , 2008 .

[29]  A. Watanabe,et al.  Investigation of humic acid N with X-ray photoelectron spectroscopy: Effect of acid hydrolysis and comparison with 15N cross polarization/magic angle spinning nuclear magnetic resonance spectroscopy , 2005 .

[30]  Jeff Dahn,et al.  Volume, Pressure and Thickness Evolution of Li-Ion Pouch Cells with Silicon-Composite Negative Electrodes , 2017 .

[31]  J. Kučerík,et al.  FT-IR study of gamma-radiation induced degradation of polyvinyl alcohol (PVA) and PVA/humic acids blends , 2010 .