Alpha-Synuclein Aggregates Associated with Mitochondria in Tunnelling Nanotubes

[1]  S. Diez,et al.  Mitochondria-adaptor TRAK1 promotes kinesin-1 driven transport in crowded environments , 2020, bioRxiv.

[2]  J. Henley,et al.  Ginkgolic acid promotes autophagy-dependent clearance of intracellular alpha-synuclein aggregates , 2019, Molecular and Cellular Neuroscience.

[3]  T. Cunha-Oliveira,et al.  Intracellular and Intercellular Mitochondrial Dynamics in Parkinson’s Disease , 2019, Front. Neurosci..

[4]  P. Svenningsson,et al.  Binding of α-synuclein oligomers to Cx32 facilitates protein uptake and transfer in neurons and oligodendrocytes , 2019, Acta Neuropathologica.

[5]  C. Zurzolo,et al.  Effect of tolytoxin on tunneling nanotube formation and function , 2019, Scientific Reports.

[6]  A. Lieberman,et al.  Pathogenic alpha-synuclein aggregates preferentially bind to mitochondria and affect cellular respiration , 2019, Acta neuropathologica communications.

[7]  R. Jagasia,et al.  Mitochondrial Dysfunction in Astrocytes Impairs the Generation of Reactive Astrocytes and Enhances Neuronal Cell Death in the Cortex Upon Photothrombotic Lesion , 2019, Front. Mol. Neurosci..

[8]  K. Gousset,et al.  Correlative cryo-electron microscopy reveals the structure of TNTs in neuronal cells , 2019, Nature Communications.

[9]  D. Galasko,et al.  α-Synuclein oligomers induce early axonal dysfunction in human iPSC-based models of synucleinopathies , 2018, Proceedings of the National Academy of Sciences.

[10]  Xinnan Wang,et al.  Alpha-synuclein delays mitophagy and targeting Miro rescues neuron loss in Parkinson’s models , 2018, Acta Neuropathologica.

[11]  G. Grant,et al.  Epothilone D inhibits microglia-mediated spread of alpha-synuclein aggregates , 2018, Molecular and Cellular Neuroscience.

[12]  G. Sukhikh,et al.  Miro1 Enhances Mitochondria Transfer from Multipotent Mesenchymal Stem Cells (MMSC) to Neural Cells and Improves the Efficacy of Cell Recovery , 2018, Molecules.

[13]  K. Bieńkowska-Szewczyk,et al.  Tunneling Nanotubes as a Novel Route of Cell-to-Cell Spread of Herpesviruses , 2018, Journal of Virology.

[14]  N. Kamasawa,et al.  Identification of a highly neurotoxic α-synuclein species inducing mitochondrial damage and mitophagy in Parkinson’s disease , 2018, Proceedings of the National Academy of Sciences.

[15]  I. Pienaar,et al.  Understanding Miro GTPases: Implications in the Treatment of Neurodegenerative Disorders , 2018, Molecular Neurobiology.

[16]  G. Lugo-Villarino,et al.  Tunneling Nanotubes: Intimate Communication between Myeloid Cells , 2018, Front. Immunol..

[17]  K. He,et al.  Mitochondria are transported along microtubules in membrane nanotubes to rescue distressed cardiomyocytes from apoptosis , 2018, Cell Death & Disease.

[18]  J. Ježek,et al.  Reactive Oxygen Species and Mitochondrial Dynamics: The Yin and Yang of Mitochondrial Dysfunction and Cancer Progression , 2018, Antioxidants.

[19]  M. Ingelsson,et al.  Human Astrocytes Transfer Aggregated Alpha-Synuclein via Tunneling Nanotubes , 2017, The Journal of Neuroscience.

[20]  E. Eugenin,et al.  Tunneling nanotubes (TNT) mediate long-range gap junctional communication: Implications for HIV cell to cell spread , 2017, Scientific Reports.

[21]  R. Ransohoff,et al.  Polymorphic regulation of mitochondrial fission and fusion modifies phenotypes of microglia in neuroinflammation , 2017, Scientific Reports.

[22]  D. Pountney,et al.  Calcipotriol inhibits α‐synuclein aggregation in SH‐SY5Y neuroblastoma cells by a Calbindin‐D28k‐dependent mechanism , 2017, Journal of neurochemistry.

[23]  R. Faull,et al.  α-synuclein transfer through tunneling nanotubes occurs in SH-SY5Y cells and primary brain pericytes from Parkinson’s disease patients , 2017, Scientific Reports.

[24]  P. Stopka,et al.  Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells , 2017, eLife.

[25]  R. Chung,et al.  Potential Modes of Intercellular α-Synuclein Transmission , 2017, International journal of molecular sciences.

[26]  H. Boddeke,et al.  University of Groningen Impairment of mitochondria dynamics by human A53T alpha-synuclein and rescue by NAP (davunetide) in a cell model for Parkinson's disease , 2016 .

[27]  L. Buée,et al.  Tunneling nanotube (TNT)-mediated neuron-to neuron transfer of pathological Tau protein assemblies , 2016, Acta neuropathologica communications.

[28]  J. Olivo-Marin,et al.  Tunneling nanotubes spread fibrillar α‐synuclein by intercellular trafficking of lysosomes , 2016, The EMBO journal.

[29]  C. Zurzolo,et al.  Tunneling nanotubes: A possible highway in the spreading of tau and other prion-like proteins in neurodegenerative diseases , 2016, Prion.

[30]  R. Teasdale,et al.  Parkinson Disease-linked Vps35 R524W Mutation Impairs the Endosomal Association of Retromer and Induces α-Synuclein Aggregation* , 2016, The Journal of Biological Chemistry.

[31]  Caitlyn W. Barrett,et al.  α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease , 2016, Science Translational Medicine.

[32]  D. Geschwind,et al.  Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism , 2015, Proceedings of the National Academy of Sciences.

[33]  D. Klenerman,et al.  Aggregated α-synuclein and complex I deficiency: exploration of their relationship in differentiated neurons , 2015, Cell Death and Disease.

[34]  C. Zurzolo,et al.  Identification and Characterization of Tunneling Nanotubes for Intercellular Trafficking , 2015, Current protocols in cell biology.

[35]  Richard Wade-Martins,et al.  Mitochondrial dysfunction and mitophagy in Parkinson's: from familial to sporadic disease. , 2015, Trends in biochemical sciences.

[36]  H. Gerdes,et al.  Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells , 2015, Cell Death and Differentiation.

[37]  K. Fuxe,et al.  Extracellular-vesicle type of volume transmission and tunnelling-nanotube type of wiring transmission add a new dimension to brain neuro-glial networks , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[38]  M. Nireekshan Kumar,et al.  Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy , 2014, The EMBO journal.

[39]  C. Moores,et al.  Delineation of the TRAK binding regions of the kinesin-1 motor proteins , 2013, FEBS letters.

[40]  A. Danckaert,et al.  Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes , 2013, Journal of Cell Science.

[41]  Y. Engelborghs,et al.  Raised calcium and oxidative stress cooperatively promote alpha-synuclein aggregate formation , 2013, Neurochemistry International.

[42]  C. Hoogenraad,et al.  TRAK/Milton Motor-Adaptor Proteins Steer Mitochondrial Trafficking to Axons and Dendrites , 2013, Neuron.

[43]  R. Riek,et al.  Alpha-synuclein oligomers impair neuronal microtubule-kinesin interplay * , 2013 .

[44]  J. Goodwin,et al.  Potassium Depolarization and Raised Calcium Induces α-Synuclein Aggregates , 2013, Neurotoxicity Research.

[45]  K. Manova-Todorova,et al.  Tunneling Nanotubes , 2012, Communicative & integrative biology.

[46]  K. Chung,et al.  Alpha‐synuclein impairs normal dynamics of mitochondria in cell and animal models of Parkinson’s disease , 2012, Journal of neurochemistry.

[47]  J. Kordower,et al.  Alterations in axonal transport motor proteins in sporadic and experimental Parkinson's disease. , 2012, Brain : a journal of neurology.

[48]  A. Negro,et al.  α-Synuclein Controls Mitochondrial Calcium Homeostasis by Enhancing Endoplasmic Reticulum-Mitochondria Interactions* , 2012, The Journal of Biological Chemistry.

[49]  K. Manova-Todorova,et al.  Tunneling Nanotubes Provide a Unique Conduit for Intercellular Transfer of Cellular Contents in Human Malignant Pleural Mesothelioma , 2012, PloS one.

[50]  Xiangmei Zhou,et al.  A role for mitochondria in NLRP3 inflammasome activation , 2011, Nature.

[51]  J. Shuai,et al.  Active generation and propagation of Ca2+ signals within tunneling membrane nanotubes. , 2011, Biophysical journal.

[52]  F. Stephenson,et al.  Trafficking Kinesin Protein (TRAK)-mediated Transport of Mitochondria in Axons of Hippocampal Neurons* , 2011, The Journal of Biological Chemistry.

[53]  S. Ryter,et al.  Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. , 2011, Nature immunology.

[54]  J. Andersen,et al.  Mitochondrial alpha-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo , 2010, Neuroscience Letters.

[55]  J. Berman,et al.  Tunneling nanotubes (TNT) , 2009 .

[56]  Nicolas Chenouard,et al.  Prions hijack tunnelling nanotubes for intercellular spread , 2009, Nature Cell Biology.

[57]  D. Attwell,et al.  Miro1 Is a Calcium Sensor for Glutamate Receptor-Dependent Localization of Mitochondria at Synapses , 2009, Neuron.

[58]  Xinnan Wang,et al.  The Mechanism of Ca2+-Dependent Regulation of Kinesin-Mediated Mitochondrial Motility , 2009, Cell.

[59]  Paul G. McMenamin,et al.  Cutting Edge: Membrane Nanotubes In Vivo: A Feature of MHC Class II+ Cells in the Mouse Cornea1 , 2008, The Journal of Immunology.

[60]  M. Parihar,et al.  Mitochondrial association of alpha-synuclein causes oxidative stress , 2008, Cellular and Molecular Life Sciences.

[61]  B. Bean The action potential in mammalian central neurons , 2007, Nature Reviews Neuroscience.

[62]  Richard Kovács,et al.  Mitochondria and neuronal activity. , 2007, American journal of physiology. Cell physiology.

[63]  Changan Jiang,et al.  Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin , 2006, Nature.

[64]  A. Ruusala,et al.  The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. , 2006, Biochemical and biophysical research communications.

[65]  Simon C Watkins,et al.  Functional connectivity between immune cells mediated by tunneling nanotubules. , 2005, Immunity.

[66]  T. Kuwana,et al.  Nanotubular Highways for Intercellular Organelle Transport , 2004 .

[67]  Elior Peles,et al.  The local differentiation of myelinated axons at nodes of Ranvier , 2003, Nature Reviews Neuroscience.

[68]  E. Barrett,et al.  Mitochondrial Ca2+ uptake prevents desynchronization of quantal release and minimizes depletion during repetitive stimulation of mouse motor nerve terminals , 2003, The Journal of physiology.