Determination of crystallographic chirality of MnSi thin film grown on Si (111) substrate

MnSi is a prototypical chiral cubic magnet, in which swirling magnetic objects referred to as magnetic skyrmions appear. It is expected that the thin film of MnSi may expand the range of the magnetic skyrmion lattice phase in the temperature--magnetic field diagram. On the other hand, the MnSi film on an achiral Si (111) substrate may suffer from chiral twin formation. We succeeded in visualizing the domain structure of the chirality and axis orientation of a MnSi thin film by using a combination of transmission electron microscopy and x-ray reflectivity measurement. Only two types of domains were found on a Si (111) substrate. The information is essential for the challenge of homochiral film fabrication.

[1]  L. Molenkamp,et al.  Twin domains in epitaxial thin MnSi layers on Si(111) , 2017 .

[2]  A. I. Figueroa,et al.  Room-temperature helimagnetism in FeGe thin films , 2017, Scientific Reports.

[3]  D. McComb,et al.  Robust Zero-Field Skyrmion Formation in FeGe Epitaxial Thin Films. , 2016, Physical review letters.

[4]  Y. Tokura,et al.  Direct observation of anisotropic magnetic field response of the spin helix in FeGe thin films , 2016 .

[5]  A. I. Figueroa,et al.  Strain in epitaxial MnSi films on Si(111) in the thick film limit studied by polarization-dependent extended x-ray absorption fine structure , 2016, 1611.07736.

[6]  Benjamin Krueger,et al.  Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. , 2015, Nature materials.

[7]  J. White,et al.  Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. , 2015, Nature materials.

[8]  Y. Tokura,et al.  Formation of In-plane Skyrmions in Epitaxial MnSi Thin Films as Revealed by Planar Hall Effect , 2015, 1506.04821.

[9]  J. White,et al.  A new class of chiral materials hosting magnetic skyrmions beyond room temperature , 2015, Nature Communications.

[10]  Kang L. Wang,et al.  Blowing magnetic skyrmion bubbles , 2015, Science.

[11]  G. Nolze,et al.  Chirality determination of quartz crystals using electron backscatter diffraction. , 2015, Ultramicroscopy.

[12]  T. Koretsune,et al.  Large surface relaxation in the organic semiconductor tetracene , 2014, Nature Communications.

[13]  Y. Tokura,et al.  Stability of two-dimensional skyrmions in thin films of Mn1−xFexSi investigated by the topological Hall effect , 2014 .

[14]  Y. Tokura,et al.  Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.

[15]  A. Fert,et al.  Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. , 2013, Nature nanotechnology.

[16]  R. Wiesendanger,et al.  Writing and Deleting Single Magnetic Skyrmions , 2013, Science.

[17]  Y. Tokura,et al.  Crystal chirality and skyrmion helicity in MnSi and (Fe, Co)Si as determined by transmission electron microscopy , 2013 .

[18]  E. Karhu,et al.  Discrete helicoidal states in chiral magnetic thin films , 2013, 1305.5196.

[19]  K. Kimoto,et al.  Direct observation and dynamics of spontaneous skyrmion-like magnetic domains in a ferromagnet. , 2013, Nature nanotechnology.

[20]  A. Khorsand,et al.  Laser-induced magnetic nanostructures with tunable topological properties. , 2013, Physical review letters.

[21]  Y. Tokura,et al.  Robust formation of Skyrmions and topological Hall effect anomaly in epitaxial thin films of MnSi. , 2012, Physical review letters.

[22]  Y. Tokura,et al.  Possible skyrmion-lattice ground state in the B20 chiral-lattice magnet MnGe as seen via small-angle neutron scattering , 2012 .

[23]  U. Rößler,et al.  Extended elliptic skyrmion gratings in epitaxial MnSi thin films , 2012, 1210.1440.

[24]  K. Kern,et al.  Growth mode and atomic structure of MnSi thin films on Si(111) , 2012 .

[25]  C. Marrows,et al.  Magnetoresistance in polycrystalline and epitaxial Fe1−xCoxSi thin films , 2012 .

[26]  C. Chien,et al.  Extended Skyrmion phase in epitaxial FeGe(111) thin films. , 2012, Physical review letters.

[27]  Y. Tokura,et al.  Magnetic stripes and skyrmions with helicity reversals , 2012, Proceedings of the National Academy of Sciences.

[28]  Y. Tokura,et al.  Observation of Skyrmions in a Multiferroic Material , 2012, Science.

[29]  U. Rößler,et al.  Chiral modulations and reorientation effects in MnSi thin films , 2012 .

[30]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[31]  S. Heinze,et al.  Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions , 2011 .

[32]  E. Karhu,et al.  Helical magnetic order in MnSi thin films , 2011 .

[33]  E. Karhu,et al.  Structure and magnetic properties of MnSi epitaxial thin films , 2010 .

[34]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[35]  P. Böni,et al.  Skyrmion lattices in metallic and semiconducting B20 transition metal compounds , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  D. Chernyshov,et al.  Interplay between crystalline chirality and magnetic structure in Mn 1 − x Fe x Si , 2010 .

[37]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[38]  D. Chernyshov,et al.  Crystal handedness and spin helix chirality in Fe1-xCoxSi. , 2009, Physical review letters.

[39]  Andrew W S Johnson Chiral determination: direct interpretation of convergent-beam electron diffraction patterns using the series expansion of Cowley and Moodie. , 2007, Acta crystallographica. Section B, Structural science.

[40]  C. Pfleiderer,et al.  Spontaneous skyrmion ground states in magnetic metals , 2006, Nature.

[41]  K. Ishizuka,et al.  New electron diffraction method to identify the chirality of enantiomorphic crystals. , 2003, Acta crystallographica. Section B, Structural science.

[42]  Roy Clarke,et al.  Direct determination of epitaxial interface structure in Gd2O3 passivation of GaAs , 2002, Nature materials.

[43]  Tsuda,et al.  Refinement of crystal structural parameters using two-dimensional energy-filtered CBED patterns. , 1999, Acta crystallographica. Section A, Foundations of crystallography.

[44]  Y. Endoh,et al.  Crystal Chirality and Helicity of the Helical Spin Density Wave in MnSi. I. Convergent-Beam Electron Diffraction , 1985 .

[45]  Y. Endoh,et al.  Crystal Chirality and Helicity of the Helical Spin Density Wave in MnSi. II. Polarized Neutron Diffraction , 1985 .

[46]  T. Skyrme A Unified Field Theory of Mesons and Baryons , 1962 .