Approaching the capacity of the MIMO Rayleigh flat-fading channel with QAM constellations, independent across antennas and dimensions

In this study we consider the challenge of reliable communication over a wireless Rayleigh flat-fading channel using multiple transmit and receive antennas. Since modern digital communication systems employ signal sets of finite cardinality, we examine the use of the quadrature amplitude modulation (QAM) constellation to approach the capacity of this channel. By restricting the channel input to the M-QAM subset of the complex-plane, the maximum achievable information rate (CM-QAM ) is strictly bounded away from the channel capacity (C). We utilize a modified version of the Arimoto-Blahut algorithm to determine CM-QAM and the probability distribution over the channel input symbols that achieves it. The results of this optimization procedure numerically indicate that the optimal input symbol distribution factors into the product of identical distributions over each real dimension of the transmitted signal. This is shown to vastly reduce the computational complexity of the optimization algorithm. Furthermore, we utilize the computed optimal channel input probability mass function (pmf) to construct capacity approaching trellis codes. These codes are implemented independent across all antennas and symbol dimensions and, if used as inner codes to outer low-density parity check (LDPC) codes, can achieve arbitrarily small error rates at signal-to-noise ratios very close to the channel capacity CM-QAM . Examples are given for a 2-transmit/2-receive antenna (2 times 2) system

[1]  Paul H. Siegel,et al.  Performance analysis and code optimization of low density parity-check codes on Rayleigh fading channels , 2001, IEEE J. Sel. Areas Commun..

[2]  Xiao Ma,et al.  Capacity of power constrained memoryless AWGN channels with fixed input constellations , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[3]  A. Robert Calderbank,et al.  Space-Time block codes from orthogonal designs , 1999, IEEE Trans. Inf. Theory.

[4]  Hideki Imai,et al.  Correction to 'A New Multilevel Coding Method Using Error-Correcting Codes' , 1977, IEEE Trans. Inf. Theory.

[5]  Aleksandar Kavcic,et al.  Optimized LDPC codes for partial response channels , 2002, Proceedings IEEE International Symposium on Information Theory,.

[6]  Elvino S. Sousa,et al.  Fading-resistant modulation using several transmitter antennas , 1997, IEEE Trans. Commun..

[7]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[8]  Hans-Andrea Loeliger,et al.  On the information rate of binary-input channels with memory , 2001, ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240).

[9]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[10]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[11]  Xiao Ma,et al.  Matched information rate codes for Partial response channels , 2005, IEEE Transactions on Information Theory.

[12]  R. Dobrushin Mathematical Problems in the Shannon Theory of Optimal Coding of Information , 1961 .

[13]  V. M. DaSilva,et al.  Fading-resistant transmission from several antennas , 1995, Proceedings of 6th International Symposium on Personal, Indoor and Mobile Radio Communications.

[14]  G. David Forney,et al.  Multidimensional constellations. I. Introduction, figures of merit, and generalized cross constellations , 1989, IEEE J. Sel. Areas Commun..

[15]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[16]  Ran Gozali,et al.  Space-Time Codes for High Data Rate Wireless Communications , 2002 .

[17]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[18]  Siavash M. Alamouti,et al.  A simple transmit diversity technique for wireless communications , 1998, IEEE J. Sel. Areas Commun..

[19]  M. J. Gans,et al.  On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas , 1998, Wirel. Pers. Commun..

[20]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[21]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..