Multistage K-Means Clustering for Scenario Tree Construction

In stochastic programming and decision analysis, an important issue consists in the approximate representation of the multidimensional stochastic underlying process in the form of scenario tree. This paper presents the approach to generate the multistage multidimensional scenario tree out of a set of scenario fans. For this purpose, the multistage K-means clustering algorithm is developed. The presented scenario tree generation algorithm is motivated by the stability results for optimal values of a multistage stochastic program. The time complexity of developed multistage K-means clustering algorithm is proved to be linear in regard to the number of scenarios in the fan. The algorithm to determine the branches with nonduplicate information in the multistage scenario tree is also presented as an intermediate result of research.

[1]  Gintautas Dzemyda,et al.  Optimization and Knowledge-Based Technologies , 2009, Informatica.

[2]  Werner Römisch,et al.  Scenario tree modeling for multistage stochastic programs , 2009, Math. Program..

[3]  William T. Ziemba,et al.  Handbook of Asset and Liability Management - Set , 2007 .

[4]  Sergei Vassilvitskii,et al.  Worst-case and Smoothed Analysis of the ICP Algorithm, with an Application to the k-means Method , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[5]  Craig Turnbull,et al.  A STOCHASTIC ASSET MODEL & CALIBRATION FOR LONG-TERM FINANCIAL PLANNING PURPOSES , 2001 .

[6]  Edward R. Dougherty,et al.  Model-based evaluation of clustering validation measures , 2007, Pattern Recognit..

[7]  Gautam Mitra,et al.  Stochastic programming and scenario generation within a simulation framework: An information systems perspective , 2007, Decis. Support Syst..

[8]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[9]  Werner Römisch,et al.  Scenario Reduction Algorithms in Stochastic Programming , 2003, Comput. Optim. Appl..

[10]  Teemu Pennanen,et al.  A stochastic programming model for asset liability management of a Finnish pension company , 2007, Ann. Oper. Res..

[11]  Magne Setnes,et al.  Supervised fuzzy clustering for rule extraction , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[12]  J. Dupacová,et al.  Stochastic modeling in economics and finance , 2002 .

[13]  H. Pranevicius,et al.  Scenario Tree Generation By Clustering The Simulated Data Paths , 2007 .

[14]  Horand I. Gassmann,et al.  The SMPS format explained , 2007 .

[15]  Antanas Zilinskas,et al.  On Structural Analysis of Parliamentarian Voting Data , 2008, Informatica.

[16]  Horand I. Gassmann,et al.  2. The SMPS Format for Stochastic Linear Programs , 2005, Applications of Stochastic Programming.

[17]  Sovan Mitra A White Paper on Scenario Generation for Stochastic Programming , 2006 .

[18]  N. Growe-Kuska,et al.  Scenario reduction and scenario tree construction for power management problems , 2003, 2003 IEEE Bologna Power Tech Conference Proceedings,.

[19]  Jitka Dupacová,et al.  Scenarios for Multistage Stochastic Programs , 2000, Ann. Oper. Res..

[20]  Michal Kaut,et al.  Evaluation of scenario-generation methods for stochastic programming , 2007 .

[21]  Roger Kaufmann,et al.  Introduction to Dynamic Financial Analysis , 2001 .

[22]  Werner Römisch,et al.  A new approach to O&D revenue management based on scenario trees , 2004 .

[23]  William T. Ziemba,et al.  Handbook of Asset and Liability Management Volume 1 Theory and methodology , 2006 .

[24]  Dimitrios Gunopulos,et al.  Iterative Incremental Clustering of Time Series , 2004, EDBT.

[25]  B. Rustem,et al.  Simulation and optimization approaches to scenario tree generation , 2004 .