Atomic resolution imaging of cation ordering in niobium–tungsten complex oxides

[1]  A. J. Morris,et al.  Cation Disorder and Lithium Insertion Mechanism of Wadsley-Roth Crystallographic Shear Phases from First Principles. , 2019, Journal of the American Chemical Society.

[2]  K. Nogita,et al.  Atom locations in a Ni doped η-(Cu,Ni)6Sn5 intermetallic compound , 2019, Scripta Materialia.

[3]  Giannantonio Cibin,et al.  Niobium tungsten oxides for high-rate lithium-ion energy storage , 2018, Nature.

[4]  L. Jones,et al.  Atomic-resolution chemical mapping of ordered precipitates in Al alloys using energy-dispersive X-ray spectroscopy. , 2017, Micron.

[5]  Litao Yan,et al.  Recent advances in nanostructured Nb-based oxides for electrochemical energy storage. , 2016, Nanoscale.

[6]  Tatsuya Yokoi,et al.  Atomically ordered solute segregation behaviour in an oxide grain boundary , 2016, Nature Communications.

[7]  S. García‐Granda,et al.  A pseudo-tetragonal tungsten bronze superstructure: a combined solution of the crystal structure of K6.4(Nb,Ta)(36.3)O94 with advanced transmission electron microscopy and neutron diffraction. , 2016, Dalton transactions.

[8]  W. Tremel,et al.  Tetragonal tungsten bronzes Nb8−xW9+xO47−δ: optimization strategies and transport properties of a new n-type thermoelectric oxide , 2015 .

[9]  K. Suenaga,et al.  Detection of photons emitted from single erbium atoms in energy-dispersive X-ray spectroscopy , 2012, Nature Photonics.

[10]  Rebecca Willett,et al.  Poisson Noise Reduction with Non-local PCA , 2012, Journal of Mathematical Imaging and Vision.

[11]  Y. Ikuhara,et al.  Atomic-scale imaging of individual dopant atoms in a buried interface. , 2009, Nature materials.

[12]  C Colliex,et al.  Element-selective single atom imaging. , 2000, Science.

[13]  F. Krumeich Order and Disorder in Niobium Tungsten Oxides of the Tetragonal Tungsten Bronze Type , 1998 .

[14]  S. Iijama,et al.  Structural studies by high-resolution electron microscopy: intergrowth of ReO3 and tetragonal tungsten bronze-type structures in the system Nb2O5 WO3 , 1978 .

[15]  S. Iijima,et al.  Structural studies by high‐resolution electron microscopy: tetragonal tungsten bronze‐type structures in the system Nb2O5–WO3 , 1974 .

[16]  S. Iijima,et al.  Structural studies by electron microscopy: coherent intergrowth of the ReO3 and tetragonal tungsten bronze structure types in the system Nb2O5–WO3 , 1974 .

[17]  B. Hyde,et al.  Relations between the DO9(ReO3) structure type and some `bronze' and `tunnel' structures , 1973 .

[18]  K. M. Zinn,et al.  Transmission electron microscopy. , 1973, International ophthalmology clinics.

[19]  S. Iijima Direct observation of lattice defects in H-Nb2O5 by high resolution electron microscopy , 1973 .

[20]  Sumio Iijima,et al.  High‐Resolution Electron Microscopy of Crystal Lattice of Titanium‐Niobium Oxide , 1971 .

[21]  N. C. Stephenson A structural investigation of some stable phases in the region Nb2O5.WO3–WO3 , 1968 .

[22]  C. Djerassi,et al.  THE CRYSTAL STRUCTURE OF Nb$sub 16$W$sub 1$$sub 8$O$sub 94$, A MEMBER OF A (MeO)xMeO$sub 3$ FAMILY OF COMPOUNDS , 1966 .

[23]  R. S. Roth,et al.  Multiple phase formation in the binary system Nb2O5–WO3. I. Preparation and identification of phases , 1965 .

[24]  B. M. Gatehouse,et al.  The crystal structure of the high temperature form of niobium pentoxide , 1964 .