Mechanical and electronic properties of diamond nanowires under tensile strain from first principles

The atomic and electronic structures, heat of formation, Young’s modulus, and ideal strength of hydrogenated diamond nanowires (DNWs) with different cross-sections (from 0.06 to 2.80 nm2) and crystallographic orientations (⟨100⟩, ⟨110⟩, ⟨111⟩, and ⟨112⟩) have been investigated by means of first-principles simulations. For thinner DNWs (cross-sectional area less than 0.6 nm2), preferential growth orientation along ⟨111⟩ is observed. The Young’s modulus and ideal strength of these DNWs decrease with decreasing cross-section and show anisotropic effects. Moreover, the band gap of DNWs is sensitive to the size, crystallographic orientation and tensile strain, implying the possibility of a tunable gap. The effective mass at the edges of the conduction band and valence band are also obtained. These theoretical results are helpful for designing novel optoelectronic devices and electromechanical sensors using diamond nanowires.

[1]  A. Hirsch The era of carbon allotropes. , 2010, Nature materials.

[2]  R. Melnik,et al.  Geometry and temperature dependent thermal conductivity of diamond nanowires: A non-equilibrium molecular dynamics study , 2010 .

[3]  S. Okada Formation of graphene nanostructures on diamond nanowire surfaces , 2009 .

[4]  P. Hemmer,et al.  A diamond nanowire single-photon source. , 2009, Nature nanotechnology.

[5]  Jijun Zhao,et al.  Infrared spectra of hydrogenated nanodiamonds by first-principles simulations , 2009 .

[6]  M. Prato,et al.  Organic functionalisation and characterisation of single-walled carbon nanotubes. , 2009, Chemical Society reviews.

[7]  De-zhang Zhu,et al.  Diamond nanorods from nanocrystalline diamond films , 2009 .

[8]  Paul W. Leu,et al.  Ab initio calculations of the mechanical and electronic properties of strained Si nanowires , 2008 .

[9]  Phaedon Avouris,et al.  Carbon-nanotube photonics and optoelectronics , 2008 .

[10]  Guanghou Wang,et al.  Anisotropy in stability and Young’s modulus of hydrogenated silicon nanowires , 2008 .

[11]  Man-Fai Ng,et al.  Theoretical investigation of silicon nanowires: Methodology, geometry, surface modification, and electrical conductivity using a multiscale approach , 2007 .

[12]  Jijun Zhao,et al.  Relative stability of hydrogenated nanodiamond and nanographite from density function theory , 2007 .

[13]  Mary B Chan-Park,et al.  Advances in carbon-nanotube assembly. , 2007, Small.

[14]  D. Brenner,et al.  Thermal conductivity of diamond nanorods: Molecular simulation and scaling relations. , 2006, Nano letters.

[15]  S. T. Lee,et al.  Structures and energetics of hydrogen-terminated silicon nanowire surfaces. , 2005, The Journal of chemical physics.

[16]  L. Dubrovinsky,et al.  Aggregated diamond nanorods, the densest and least compressible form of carbon , 2005 .

[17]  C. Bostedt,et al.  Molecular limits to the quantum confinement model in diamond clusters. , 2005, Physical review letters.

[18]  Wei Zhang,et al.  Synthesis and characterization of diamond nanowires from carbon nanotubes , 2005 .

[19]  A. Sawabe,et al.  ‘Nano-rods’ of single crystalline diamond , 2004 .

[20]  I. Snook,et al.  Phase stability of nanocarbon in one dimension: nanotubes versus diamond nanowires. , 2004, The Journal of chemical physics.

[21]  S. Russo,et al.  Electronic band gaps of diamond nanowires , 2003 .

[22]  S. Russo,et al.  Ab Initio Modeling of Diamond Nanowire Structures , 2003 .

[23]  R. Ruoff,et al.  Would Diamond Nanorods Be Stronger than Fullerene Nanotubes , 2003 .

[24]  Sidney Yip,et al.  Ideal Pure Shear Strength of Aluminum and Copper , 2002, Science.

[25]  Marvin L. Cohen,et al.  Ideal strength of diamond, Si, and Ge , 2001 .

[26]  A. Fujishima,et al.  Synthesis of Well‐Aligned Diamond Nanocylinders , 2001 .

[27]  Y. Baik,et al.  Fabrication of diamond nano-whiskers , 2000 .

[28]  Field,et al.  Theoretical strength and cleavage of diamond , 2000, Physical review letters.

[29]  Y. Baik,et al.  Aligned diamond nanowhiskers , 2000 .

[30]  H. Shiomi Reactive ion etching of diamond in O2 and CF4 plasma, and fabrication of porous diamond for field emitter cathodes , 1997 .

[31]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[32]  Cohen,et al.  High-pressure synthesis, characterization, and equation of state of cubic C-BN solid solutions. , 1995, Physical review. B, Condensed matter.

[33]  E. S. Zouboulis,et al.  Elastic constants of boron nitride , 1994 .

[34]  B. Segall,et al.  Anomalous band-gap behavior and phase stability of c-BN-diamond alloys. , 1993, Physical review. B, Condensed matter.

[35]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[36]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[37]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[38]  M. Yin,et al.  Ground-state properties of diamond , 1981 .

[39]  J MEAD,et al.  Mechanical properties of lungs. , 1961, Physiological reviews.

[40]  Jijun Zhao,et al.  Mechanical and electronic properties of ultrathin nanodiamonds under uniaxial compressions , 2010 .

[41]  Uttandaraman Sundararaj,et al.  A review of vapor grown carbon nanofiber/polymer conductive composites , 2009 .

[42]  D. Appell Wired for success , 2002 .

[43]  J. Field The Properties of natural and synthetic diamond , 1992 .