Analysis of Multiscale Integrators for Multiple Attractors and Irreversible Langevin Samplers

We study multiscale integrator numerical schemes for a class of stiff stochastic differential equations (SDEs). We consider multiscale SDEs with potentially multiple attractors that behave as diffusions on graphs as the stiffness parameter goes to its limit. Classical numerical discretization schemes, such as the Euler-Maruyama scheme, become unstable as the stiffness parameter converges to its limit and appropriate multiscale integrators can correct for this. We rigorously establish the convergence of the numerical method to the related diffusion on graph, identifying the appropriate choice of discretization parameters. Theoretical results are supplemented by numerical studies on the problem of the recently developing area of introducing irreversibility in Langevin samplers in order to accelerate convergence to equilibrium.

[1]  Eric Vanden Eijnden Numerical techniques for multi-scale dynamical systems with stochastic effects , 2003 .

[2]  Mark Freidlin,et al.  On stochastic behavior of perturbed Hamiltonian systems , 2000, Ergodic Theory and Dynamical Systems.

[3]  Konstantinos Spiliopoulos,et al.  Optimal scaling of the MALA algorithm with irreversible proposals for Gaussian targets , 2017, Stochastics and Partial Differential Equations: Analysis and Computations.

[4]  K. Spiliopoulos,et al.  Variance reduction for irreversible Langevin samplers and diffusion on graphs , 2014, 1410.0255.

[5]  Nicholas Kevlahan,et al.  Principles of Multiscale Modeling , 2012 .

[6]  Jerrold E. Marsden,et al.  Nonintrusive and Structure Preserving Multiscale Integration of Stiff ODEs, SDEs, and Hamiltonian Systems with Hidden Slow Dynamics via Flow Averaging , 2009, Multiscale Model. Simul..

[7]  P. Kloeden,et al.  Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  K. Spiliopoulos,et al.  Irreversible Langevin samplers and variance reduction: a large deviations approach , 2014, 1404.0105.

[9]  Tianhai Tian,et al.  Stiffly accurate Runge-Kutta methods for stiff stochastic differential equations , 2001 .

[10]  C. Hwang,et al.  Accelerating diffusions , 2005, math/0505245.

[11]  R. Tweedie,et al.  Exponential convergence of Langevin distributions and their discrete approximations , 1996 .

[12]  Mark Freidlin,et al.  Diffusion Processes on Graphs and the Averaging Principle , 1993 .

[13]  E Weinan,et al.  Seamless multiscale modeling via dynamics on fiber bundles , 2007 .

[14]  Ioannis G. Kevrekidis,et al.  Strong convergence of projective integration schemes for singularly perturbed stochastic differential systems , 2006 .

[15]  E Weinan,et al.  A general strategy for designing seamless multiscale methods , 2009, J. Comput. Phys..

[16]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[17]  A. Skorokhod Asymptotic Methods in the Theory of Stochastic Differential Equations , 2008 .

[18]  Eric Vanden-Eijnden,et al.  ON HMM-like integrators and projective integration methods for systems with multiple time scales , 2007 .

[19]  Mark Freidlin,et al.  Random perturbations of dynamical systems and diffusion processes with conservation laws , 2004 .

[20]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[21]  E. Vanden-Eijnden,et al.  Analysis of multiscale methods for stochastic differential equations , 2005 .

[22]  Mark Freidlin,et al.  Random perturbations of Hamiltonian systems , 1994 .

[23]  G. Pavliotis,et al.  Variance Reduction Using Nonreversible Langevin Samplers , 2015, Journal of statistical physics.

[24]  Assyr Abdulle,et al.  S-ROCK: Chebyshev Methods for Stiff Stochastic Differential Equations , 2008, SIAM J. Sci. Comput..

[25]  Assyr Abdulle,et al.  High Weak Order Methods for Stochastic Differential Equations Based on Modified Equations , 2012, SIAM J. Sci. Comput..

[26]  Konstantinos Spiliopoulos,et al.  Improving the Convergence of Reversible Samplers , 2016 .

[27]  Grigorios A. Pavliotis,et al.  Multiscale Methods: Averaging and Homogenization , 2008 .

[28]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[29]  A. Abdulle,et al.  S-ROCK methods for stiff Ito SDEs , 2008 .