A study of absolute, relative and Tate homology with respect to a semidualizing module

In this paper we are concerned with absolute, relative and Tate Tor modules with respect to a fixed semidualizing module over commutative Noetherian local rings. Motivated by a result of Avramov and Martsinkovsky, we obtain an exact sequence connecting absolute Tors with relative and Tate Tors. As a consequence, we prove results that relate the vanishing of Tor modules to the depth of tensor products, and extend a result of Auslander in this direction.

[1]  Absolute Winkelcodierer,et al.  Absolute , 2020, Definitions.

[2]  Olgur Celikbas,et al.  Vanishing of relative homology and depth of tensor products , 2016, 1608.07011.

[3]  A. Sadeghi Linkage of finite G_C-dimension modules , 2015, 1507.00036.

[4]  A. Sadeghi,et al.  Linkage of modules and the Serre conditions , 2014, 1407.6544.

[5]  Jianlong Chen,et al.  Relative and Tate homology with respect to semidualizing modules , 2014 .

[6]  S. Yassemi,et al.  Relative Tor Functors with Respect to a Semidualizing Module , 2012, Algebras and Representation Theory.

[7]  S. Sather-Wagstaff,et al.  Tate cohomology with respect to semidualizing modules , 2009, 0907.4969.

[8]  S. Sather-Wagstaff,et al.  AB-Contexts and Stability for Gorenstein Flat Modules with Respect to Semidualizing Modules , 2008, 0803.0998.

[9]  S. Sather-Wagstaff,et al.  Comparison of relative cohomology theories with respect to semidualizing modules , 2007, 0706.3635.

[10]  A. Iacob Absolute, Gorenstein, and Tate Torsion Modules , 2007 .

[11]  Ryo Takahashi,et al.  Homological aspects of semidualizing modules , 2007, math/0703643.

[12]  D. White Gorenstein projective dimension with respect to a semidualizing module , 2006, math/0611711.

[13]  Y. Yoshino,et al.  Homological invariants associated to semi-dualizing bimodules , 2005, math/0505466.

[14]  Peter Jørgensen,et al.  Semi-dualizing modules and related Gorenstein homological dimensions , 2004, math/0405526.

[15]  H. Holm,et al.  Gorenstein derived functors , 2004 .

[16]  Alex Martsinkovsky,et al.  Absolute, Relative, and Tate Cohomology of Modules of Finite Gorenstein Dimension , 2002 .

[17]  A. Gerko On homological dimensions , 2001 .

[18]  Ragnar-Olaf Buchweitz,et al.  Support varieties and cohomology over complete intersections , 2000 .

[19]  Overtoun M. G. Jenda,et al.  8 Relative Homological Algebra and Balance , 2000 .

[20]  S. Iyengar Depth for complexes, and intersection theorems , 1999 .

[21]  Y. Yoshino,et al.  Remarks on a depth formula, a grade inequality and a conjecture of Auslander , 1998 .

[22]  C. Huneke,et al.  Tensor products of modules and the rigidity of Tor , 1994 .

[23]  W. Bruns,et al.  Cohen-Macaulay rings , 1993 .

[24]  R. Buchweitz,et al.  The Homological Theory of Maximal Cohen-Macaulay Approximations , 1989 .

[25]  H. Foxby Quasi‐perfect modules over COHEN‐MACAULAY Rings , 1975 .

[26]  W. Vasconcelos Divisor Theory in Module Categories , 1974 .

[27]  H. Foxby Gorenstein Modules and Related Modules. , 1972 .

[28]  M. Auslander Modules over unramified regular local rings , 1961 .