Some recent results in metric fixed point theory

[1]  William A. Kirk,et al.  FIXED POINT THEOREMS IN CAT(0) SPACES AND R-TREES , 2009 .

[2]  A. Aksoy,et al.  Metric Trees, Hyperconvex Hulls and Extensions , 2008 .

[3]  M. S. Borman,et al.  Compactness and Measures of Noncompactness in Metric Trees , 2007, math/0702124.

[4]  Jack Markin,et al.  Fixed points, selections and best approximation for multivalued mappings in R-trees , 2007 .

[5]  W. A. Kirk,et al.  Best Approximation in ℝ-Trees , 2007 .

[6]  M. Khamsi,et al.  Fixed Points of Uniformly Lipschitzian Mappings in Metric Trees , 2007 .

[7]  W. A. Kirk Hyperconvexity of R-trees , 2007 .

[8]  William A. Kirk,et al.  Fixed points of uniformly lipschitzian mappings , 2006 .

[9]  M. Khamsi,et al.  A Selection Theorem in Metric Trees , 2006 .

[10]  William A. Kirk,et al.  Fixed point theorems in R-trees with applications to graph theory , 2006 .

[11]  M. Khamsi Sadovskii's fixed point theorem without convexity , 2003 .

[12]  Ilaria Bartolini,et al.  String Matching with Metric Trees Using an Approximate Distance , 2002, SPIRE.

[13]  ℝ-Trees in Topology, Geometry, and Group Theory , 2001 .

[14]  Mohamed A. Khamsi,et al.  Introduction to hyperconvex spaces , 2001 .

[15]  Arcwise Isometries,et al.  A Course in Metric Geometry , 2001 .

[16]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[17]  W. A. Kirk Hyperconvexity of ℝ-trees , 1998, Fundamenta Mathematicae.

[18]  Pramila Srivastava,et al.  Fixed Point Theory and Best Approximation: The KKM-map Principle , 1997 .

[19]  Urs Lang,et al.  Kirszbraun's Theorem and Metric Spaces of Bounded Curvature , 1997 .

[20]  A. Dress,et al.  The Real Tree , 1996 .

[21]  Van de M. L. J. Vel Theory of convex structures , 1993 .

[22]  C. Horvath,et al.  Extension and Selection theorems in Topological spaces with a generalized convexity structure , 1993 .

[23]  Itai Shafrir,et al.  Nonexpansive iterations in hyperbolic spaces , 1990 .

[24]  L. Oversteegen,et al.  A Topological Characterization of R-Trees , 1990 .

[25]  J. Baillon Nonexpansive mappings and hyperconvex spaces , 1988 .

[26]  Andreas W. M. Dress,et al.  Gated sets in metric spaces , 1987 .

[27]  Alain Quilliot On the Helly Property Working as a Compactness Criterion on Graphs , 1985, J. Comb. Theory, Ser. A.

[28]  A. Dress Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: A note on combinatorial properties of metric spaces , 1984 .

[29]  S. Reich,et al.  Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings , 1984 .

[30]  Singh M. Nayan,et al.  On Fixed Points , 1981 .

[31]  Richard J. Nowakowski,et al.  Fixed-edge theorem for graphs with loops , 1979, J. Graph Theory.

[32]  Ronald E. Bruck A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces , 1979 .

[33]  P. Soardi Existence of fixed points of nonexpansive mappings in certain Banach lattices , 1979 .

[34]  Simeon Reich,et al.  Approximate selections, best approximations, fixed points, and invariant sets , 1978 .

[35]  Jacques Tits,et al.  A “theorem of Lie-Kolchin” for trees , 1977 .

[36]  L. E. Ward Recent Developments in Dendritic Spaces and Related Topics , 1975 .

[37]  H. Elton Lacey,et al.  The Isometric Theory of Classical Banach Spaces , 1974 .

[38]  S. Reich Fixed points in locally covex spaces , 1972 .

[39]  Ky Fan,et al.  Extensions of two fixed point theorems of F. E. Browder , 1969 .

[40]  J. Isbell Six theorems about injective metric spaces , 1964 .

[41]  G. S. Young Fixed-point theorems for arcwise connected continua , 1960 .

[42]  N. Aronszajn,et al.  EXTENSION OF UNIFORMLY CONTINUOUS TRANSFORMATIONS AND HYPERCONVEX METRIC SPACES , 1956 .

[43]  G. S. Young The Introduction of Local Connectivity by Change of Topology , 1946 .

[44]  M. Fabian,et al.  Uniform Convexity of , 2022 .