Subwavelength InSb-based Slot wavguides for THz transport: concept and practical implementations

Seeking better surface plasmon polariton (SPP) waveguides is of critical importance to construct the frequency-agile terahertz (THz) front-end circuits. We propose and investigate here a new class of semiconductor-based slot plasmonic waveguides for subwavelength THz transport. Optimizations of the key geometrical parameters demonstrate its better guiding properties for simultaneous realization of long propagation lengths (up to several millimeters) and ultra-tight mode confinement (~λ2/530) in the THz spectral range. The feasibility of the waveguide for compact THz components is also studied to lay the foundations for its practical implementations. Importantly, the waveguide is compatible with the current complementary metal-oxide-semiconductor (CMOS) fabrication technique. We believe the proposed waveguide configuration could offer a potential for developing a CMOS plasmonic platform and can be designed into various components for future integrated THz circuits (ITCs).

[1]  Dominique Coquillat,et al.  Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors. , 2012, Nano letters.

[2]  Xiang Zhang,et al.  Toward integrated plasmonic circuits , 2012 .

[3]  Wei-Ping Huang,et al.  Electrically-pumped plasmonic lasers based on low-loss hybrid SPP waveguide. , 2015, Optics express.

[4]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[5]  K. Kreher Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures , 1997 .

[6]  J. Aizpurua,et al.  Detection of deep-subwavelength dielectric layers at terahertz frequencies using semiconductor plasmonic resonators. , 2012, Optics express.

[7]  Joseph W. Haus,et al.  Photonic Band Gap Structures , 2004 .

[8]  S. Prabhu,et al.  Bio-interfacing of resonant transmission characteristics of InSb-based terahertz plasmonic waveguide , 2015 .

[9]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[10]  Thomas E Murphy,et al.  Terahertz surface plasmon polaritons on a semiconductor surface structured with periodic V-grooves. , 2013, Optics express.

[11]  H. Kurz,et al.  Transmission of THz radiation through InSb gratings of subwavelength apertures. , 2005, Optics express.

[12]  Shuisheng Jian,et al.  Tunable subwavelength terahertz plasmon- induced transparency in the InSb slot waveguide side-coupled with two stub resonators , 2015 .

[13]  Qiang Wu,et al.  Hybrid nanowedge plasmonic waveguide for low loss propagation with ultra-deep-subwavelength mode confinement. , 2014, Optics letters.

[14]  J. Homola Present and future of surface plasmon resonance biosensors , 2003, Analytical and bioanalytical chemistry.

[15]  M. S. Abrishamian,et al.  Numerical investigation of a tunable band-pass plasmonic filter with a hollow-core ring resonator , 2011 .

[16]  Lauren M. Otto,et al.  Dielectrophoresis-Enhanced Plasmonic Sensing with Gold Nanohole Arrays , 2014, Nano letters.

[17]  M. Beruete,et al.  Focus on terahertz plasmonics , 2015 .

[18]  S. Ray,et al.  Terahertz electroluminescence from boron-doped silicon devices , 2003 .

[19]  A. Zayats,et al.  Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator. , 2012, Physical review letters.

[20]  F. Rana,et al.  Graphene Terahertz Plasmon Oscillators , 2007, IEEE Transactions on Nanotechnology.

[21]  T. Murphy,et al.  Plasmonic Terahertz Waveguide Based on Anisotropically Etched Silicon Substrate , 2014, IEEE Transactions on Terahertz Science and Technology.

[22]  J. Borburgh,et al.  Dispersion of surface plasmons in InSb-gratings , 1974 .

[23]  J. Yamauchi,et al.  Surface Plasmon Resonance Waveguide Sensor in the Terahertz Regime , 2016, Journal of Lightwave Technology.

[24]  Thomas W. Ebbesen,et al.  Surface-plasmon circuitry , 2008 .

[25]  Aurèle J. L. Adam,et al.  Enhanced Terahertz Emission from Schottky Junctions Using Plasmonic Nanostructures , 2014 .

[26]  Ruonan Han,et al.  Progress and Challenges Towards Terahertz CMOS Integrated Circuits , 2010, IEEE Journal of Solid-State Circuits.

[27]  S. Safavi-Naeini,et al.  Slot plasmonic waveguide based on doped-GaAs for terahertz deep-subwavelength applications. , 2015, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  Ansheng Liu,et al.  Terahertz optical gain based on intersubband transitions in optically pumped semiconductor quantum wells: Coherent pump–probe interactions , 1999 .

[29]  Hiroaki Matsui,et al.  Metallic mesh-based terahertz biosensing of single- and double-stranded DNA , 2012 .

[30]  Valentyn S Volkov,et al.  Ultralow-Loss CMOS Copper Plasmonic Waveguides. , 2016, Nano letters.

[31]  Kyung-Soo Kim,et al.  Nondestructive Material Characterization in the Terahertz Band by Selective Extraction of Sample-Induced Echo Signals , 2015 .

[32]  A. Kristensen,et al.  Plasmonic V-groove waveguides with Bragg grating filters via nanoimprint lithography. , 2012, Optics express.

[33]  J. Ho,et al.  Carbon doping of InSb nanowires for high-performance p-channel field-effect-transistors. , 2013, Nanoscale.

[34]  M. Oszwałldowski,et al.  Temperature dependence of intrinsic carrier concentration and density of states effective mass of heavy holes in InSb , 1988 .

[35]  Yuan Ren,et al.  Single mode terahertz quantum cascade amplifier , 2014 .

[36]  M. Čada,et al.  Plasmon Dispersion at an Interface Between a Dielectric and a Conducting Medium With Moving Electrons , 2016, IEEE Journal of Quantum Electronics.

[37]  Na Liu,et al.  DNA-assembled bimetallic plasmonic nanosensors , 2014, Light: Science & Applications.

[38]  X. He Comparison of the waveguide properties of gap surface plasmon in the terahertz region and visible spectra , 2009 .

[39]  Javier Aizpurua,et al.  Mapping the near fields of plasmonic nanoantennas by scattering‐type scanning near‐field optical microscopy , 2015 .

[40]  Sailing He,et al.  Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium. , 2011, Optics express.

[41]  Y. Fujimoto,et al.  Development of Nd-doped Optical Gain Material Based on Silica Glass with High Thermal Shock Parameter for High-Average-Power Laser , 2005, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[42]  Liancheng Zhao,et al.  Characterization of ultrathin InSb nanocrystals film deposited on SiO2/Si substrate , 2011, Nanoscale research letters.

[43]  Markus Pollnau,et al.  Loss compensation in long-range dielectric-loaded surface plasmon-polariton waveguides. , 2011, Optics express.

[44]  Aaron R Wheeler,et al.  Electrochemistry, biosensors and microfluidics: a convergence of fields. , 2015, Chemical Society reviews.

[45]  D. Mao,et al.  Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency , 2012, Nanotechnology.

[46]  Min Gu,et al.  Optical storage arrays: a perspective for future big data storage , 2014, Light: Science & Applications.

[47]  Qi Jie Wang,et al.  Tunable subwavelength terahertz plasmonic stub waveguide filters , 2013, 2013 IEEE 5th International Nanoelectronics Conference (INEC).