On the Potential of SiGe HBTs for Extreme Environment Electronics

"Extreme environments" represents an important niche market for electronics and spans the operation of electronic components in surroundings lying outside the domain of conventional commercial, or even military, specifications. Such extreme environments would include, for instance, operation to very low temperatures (e.g., to 77 K or even 4.2 K), operation at very high temperatures (e.g., to 200/spl deg/C or even 300/spl deg/C), and operation in a radiation-rich environment (e.g., space). We argue that the unique bandgap-engineered features of silicon-germanium heterojunction bipolar transistors offer great potential to simultaneously satisfy all three extreme environment applications, potentially with little or no process modification, ultimately providing compelling cost advantages at the IC and system level.

[1]  E. Johnson Physical limitations on frequency and power parameters of transistors , 1965 .

[2]  E. S. Schlig Low-temperature operation of Ge picosecond logic circuits , 1968 .

[3]  W. Kauffman,et al.  The temperature dependence of ideal gain in double diffused silicon transistors , 1968 .

[4]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[5]  Dale Buhanan Investigation of current-gain temperature dependence in silicon transistors , 1969 .

[6]  W. Dumke Effect of minority carrier trapping on the low-temperature characteristics of Si transistors , 1970 .

[7]  W. Dumke The effect of base doping on the performance of Si bipolar transistors at low temperatures , 1981, IEEE Transactions on Electron Devices.

[8]  D. Harame,et al.  High performance operation of silicon bipolar transistors at liquid nitrogen temperature , 1987, 1987 International Electron Devices Meeting.

[9]  J. Woo,et al.  Optimization of bipolar transistors for low temperature operation , 1987, 1987 International Electron Devices Meeting.

[10]  T. S. Jayadev,et al.  Operation of poly emitter bipolar npn and p-channel JFETs near liquid helium (10 K) temperature , 1988, Proceedings of the 1988 Bipolar Circuits and Technology Meeting,.

[11]  S. Tiwari A new effect at high currents in heterostructure bipolar transistors , 1988, IEEE Electron Device Letters.

[12]  K. Jenkins,et al.  On the low-temperature static and dynamic properties of high-performance silicon bipolar transistors , 1989 .

[13]  P. Lu,et al.  Collector-base junction avalanche effects in advanced double-poly self-aligned bipolar transistors , 1989 .

[14]  Keith A. Jenkins,et al.  Low-temperature operation of silicon bipolar ECL circuits , 1989, IEEE International Solid-State Circuits Conference, 1989 ISSCC. Digest of Technical Papers.

[15]  K. Shimohigashi,et al.  A high-current-gain low-temperature pseudo-HBT utilizing a sidewall base-contact structure (SICOS) , 1989, IEEE Electron Device Letters.

[16]  J. D. Chlipala,et al.  Explosion of poly-silicide links in laser programmable redundancy for VLSI memory repair , 1989 .

[17]  John D. Cressler,et al.  Scaling the silicon bipolar transistor for sub-100-ps ECL circuit operation at liquid nitrogen temperature , 1990 .

[18]  P. Lu Low-temperature avalanche multiplication in the collector-base junction of advanced n-p-n transistors , 1990 .

[19]  J. Comfort,et al.  Low temperature operation of Si and SiGe bipolar transistors , 1990, International Technical Digest on Electron Devices.

[20]  J. Cressler,et al.  Single crystal emitter gap for epitaxial Si- and SiGe-base transistors , 1991, International Electron Devices Meeting 1991 [Technical Digest].

[21]  J. Cressler,et al.  Sub-30-ps ECL circuit operation at liquid-nitrogen temperature using self-aligned epitaxial SiGe-base bipolar transistors , 1991, IEEE Electron Device Letters.

[22]  Clare C. Yu,et al.  Temperature dependence and post-stress recovery of hot electron degradation effects in bipolar transistors , 1991, Proceedings of the 1991 Bipolar Circuits and Technology Meeting.

[23]  E. W. Enlow,et al.  Response of advanced bipolar processes to ionizing radiation , 1991 .

[24]  J. Cressler,et al.  On the profile design and optimization of epitaxial Si- and SiGe-base bipolar technology for 77 K applications. II. Circuit performance issues , 1993 .

[25]  J. Cressler,et al.  On the profile design and optimization of epitaxial Si- and SiGe-base bipolar technology for 77 K applications. I. Transistor DC design considerations , 1993 .

[26]  peixiong zhao,et al.  Physical mechanisms contributing to enhanced bipolar gain degradation at low dose rates , 1994 .

[27]  D. Harame,et al.  SILICON:GERMANIUM HETEROJUNCTION BIPOLAR TRANSISTORS: FROM EXPERIMENT TO TECHNOLOGY , 1994 .

[28]  J. Cressler,et al.  An epitaxial emitter-cap SiGe-base bipolar technology optimized for liquid-nitrogen temperature operation , 1994, IEEE Electron Device Letters.

[29]  D. Fleetwood,et al.  An overview of high-temperature electronic device technologies and potential applications , 1994 .

[30]  J. Babcock,et al.  Ionizing radiation tolerance of high-performance SiGe HBT's grown by UHV/CVD , 1995 .

[31]  J. Cressler,et al.  Operation of SiGe heterojunction bipolar transistors in the liquid-helium temperature regime , 1995, IEEE Electron Device Letters.

[32]  R. Pease Total-dose issues for microelectronics in space systems , 1996 .

[33]  J. Sturm,et al.  Si/Si/sub 1-x-y/GexCy/Si heterojunction bipolar transistors , 1996, IEEE Electron Device Letters.

[34]  R. Gotzfried,et al.  SiGe-technology and components for mobile communication systems , 1996, Proceedings of the 1996 BIPOLAR/BiCMOS Circuits and Technology Meeting.

[35]  J. S. Hamel Separating the influences of neutral base recombination and avalanche breakdown on base current reduction in SiGe HBT's , 1997 .

[36]  J. Song,et al.  Comments on On the base profile design and optimization of epitaxial Si- and SiGe-base bipolar tech , 1997 .

[37]  S. Jeng,et al.  A SiGe HBT BiCMOS technology for mixed signal RF applications , 1997, Proceedings of the 1997 Bipolar/BiCMOS Circuits and Technology Meeting.

[38]  S. Clark,et al.  Neutron radiation tolerance of advanced UHV/CVD SiGe HBT BiCMOS technology , 1997 .

[39]  J. Cressler SiGe HBT technology: a new contender for Si-based RF and microwave circuit applications , 1998 .

[40]  J. Regolini,et al.  A high performance low complexity SiGe HBT for BiCMOS integration , 1998, Proceedings of the 1998 Bipolar/BiCMOS Circuits and Technology Meeting (Cat. No.98CH36198).

[41]  S. Clark,et al.  An investigation of the spatial location of proton-induced traps in SiGe HBTs , 1998 .

[42]  J. Cressler,et al.  Optimization of SiGe HBTs for operation at high current densities , 1999 .

[43]  S. Clark,et al.  The effects of proton irradiation on the RF performance of SiGe HBTs , 1999 .

[44]  H. J. Osten,et al.  Increasing process margin in SiGe heterojunction bipolar technology by adding carbon , 1999 .

[45]  S. Clark,et al.  Anomalous dose rate effects in gamma irradiated SiGe heterojunction bipolar transistors , 1999 .

[46]  A. Fischer,et al.  An equilibrium model for buried SiGe strained layers , 2000 .

[47]  E. Rosseel,et al.  A 0.35 /spl mu/m SiGe BiCMOS process featuring a 80 GHz f/sub max/ HBT and integrated high-Q RF passive components , 2000, Proceedings of the 2000 BIPOLAR/BiCMOS Circuits and Technology Meeting (Cat. No.00CH37124).

[48]  R. Reed,et al.  Single event effects in circuit-hardened SiGe HBT logic at gigabit per second data rates , 2000 .

[49]  J. Cressler,et al.  Simulation of SEE-induced charge collection in UHV/CVD SiGe HBTs , 2000 .

[50]  P. Marshall,et al.  The effects of proton irradiation on the lateral and vertical scaling of UHV/CVD SiGe HBT BiCMOS technology , 2000 .

[51]  S. Clark,et al.  A comparison of the effects of gamma irradiation on SiGe HBT and GaAs HBT technologies , 2000 .

[52]  M. Carroll,et al.  COM2 SiGe modular BiCMOS technology for digital, mixed-signal, and RF applications , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[53]  T. Hashimoto,et al.  A 73 GHz f/sub T/ 0.18 /spl mu/m RF-SiGe BiCMOS technology considering thermal budget trade-off and with reduced boron-spike effect on HBT characteristics , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[54]  J. S. Hamel,et al.  An electrical method for measuring the difference bandgap across the neutral base in SiGe HBT's , 2000 .

[55]  F. Johnson,et al.  A highly manufacturable 0.25/spl mu/m RF technology utilizing a unique SiGe integration , 2001, Proceedings of the 2001 BIPOLAR/BiCMOS Circuits and Technology Meeting (Cat. No.01CH37212).

[56]  B. Jagannathan,et al.  A 0.18 /spl mu/m BiCMOS technology featuring 120/100 GHz (f/sub T//f/sub max/) HBT and ASIC-compatible CMOS using copper interconnect , 2001, Proceedings of the 2001 BIPOLAR/BiCMOS Circuits and Technology Meeting (Cat. No.01CH37212).

[57]  R. Reed,et al.  Proton radiation response of SiGe HBT analog and RF circuits and passives , 2001 .

[58]  J. Bock,et al.  High-speed SiGe:C bipolar technology , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[59]  D. Knoll,et al.  Cost-effective high-performance high-voltage SiGe:C HBTs with 100 GHz f/sub T/ and BV/sub CEO/ /spl times/ f/sub T/ products exceeding 220 VGHz , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[60]  K. Oda,et al.  Self-aligned selective-epitaxial-growth Si/sub 1-x-y/Ge/sub x/C/sub y/ HBT technology featuring 170-GHz f/sub max/ , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[61]  J. Slotboom,et al.  Explorations for high performance SiGe-heterojunction bipolar transistor integration , 2001, Proceedings of the 2001 BIPOLAR/BiCMOS Circuits and Technology Meeting (Cat. No.01CH37212).

[62]  R. Reed,et al.  Modeling of single-event effects in circuit-hardened high-speed SiGe HBT logic , 2001 .

[63]  B. Jagannathan,et al.  Measurement and modeling of thermal resistance of high speed SiGe heterojunction bipolar transistors , 2001, 2001 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems. Digest of Papers (IEEE Cat. No.01EX496).

[64]  F. Wang,et al.  Ultra high speed SiGe NPN for advanced BiCMOS technology , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[65]  R. Reed,et al.  1/f noise in proton-irradiated SiGe HBTs , 2001 .

[66]  D. Dutartre,et al.  High performance 0.25 /spl mu/m SiGe and SiGe:C HBTs using non selective epitaxy , 2001, Proceedings of the 2001 BIPOLAR/BiCMOS Circuits and Technology Meeting (Cat. No.01CH37212).

[67]  D. Greenberg,et al.  0.13 /spl mu/m 210 GHz f/sub T/ SiGe HBTs - expanding the horizons of SiGe BiCMOS , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[68]  S. Jeng,et al.  Self-aligned SiGe NPN transistors with 285 GHz f/sub MAX/ and 207 GHz f/sub T/ in a manufacturable technology , 2002, IEEE Electron Device Letters.

[69]  J. Cressler,et al.  A new "mixed-mode" reliability degradation mechanism in advanced Si and SiGe bipolar transistors , 2002 .

[70]  R. Reed,et al.  An investigation of the origins of the variable proton tolerance in multiple SiGe HBT BiCMOS technology generations , 2002 .

[71]  S. Jeng,et al.  SiGe HBTs with cut-off frequency of 350 GHz , 2002, Digest. International Electron Devices Meeting,.

[72]  J. Rieh,et al.  Structural dependence of the thermal resistance of trench-isolated bipolar transistors , 2002, Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting.

[73]  Fan Chen,et al.  Silicon-Germanium Heterojunction Bipolar Transistors , 2002 .

[74]  John D. Cressler,et al.  A comparison of SEU tolerance in high-speed SiGe HBT digital logic designed with multiple circuit architectures , 2002 .

[75]  J. Cressler,et al.  An investigation of the damage mechanisms in impact ionization-induced "mixed-mode" reliability stressing of scaled SiGe HBTs , 2003, IEEE International Electron Devices Meeting 2003.

[76]  J. Rieh,et al.  Reliability of high-speed SiGe heterojunction bipolar transistors under very high forward current density , 2003 .

[77]  R. Reed,et al.  Proton tolerance of third-generation, 0.12 /spl mu/m 185 GHz SiGe HBTs , 2003 .

[78]  R. Reed,et al.  The effects of operating bias conditions on the proton tolerance of SiGe HBTs , 2003 .

[79]  J. C. Pickel,et al.  Heavy-ion broad-beam and microprobe studies of single-event upsets in 0.20-/spl mu/m SiGe heterojunction bipolar transistors and circuits , 2003 .

[80]  J. Cressler,et al.  Impact of geometrical scaling on low-frequency noise in SiGe HBTs , 2003 .

[81]  J. Laskar,et al.  Cryogenic performance of a 200 GHz SiGe HBT technology , 2003, 2003 Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting (IEEE Cat. No.03CH37440).

[82]  John D. Cressler,et al.  An SEU hardening approach for high-speed SiGe HBT digital logic , 2003 .

[83]  Wei-Min Lance Kuo,et al.  Proton tolerance of fourth-generation 350 GHz UHV/CVD SiGe HBTs , 2004, IEEE Transactions on Nuclear Science.

[84]  Wei-Min Lance Kuo,et al.  Proton radiation response of monolithic Millimeter-wave transceiver building blocks implemented in 200 GHz SiGe technology , 2004, IEEE Transactions on Nuclear Science.

[85]  J. Cressler,et al.  On the suitability of SiGe HBTs for high-temperature (to 300/spl deg/) electronics , 2004, Bipolar/BiCMOS Circuits and Technology, 2004. Proceedings of the 2004 Meeting.

[86]  J. Cressler,et al.  On the High-Temperature (to 300 C) Characteristics , 2004 .

[87]  Zhijian Yang,et al.  Reliability and performance scaling of very high speed SiGe HBTs , 2004, Microelectron. Reliab..

[88]  J. Cressler,et al.  Total Dose Tolerance of Monolithic Millimeter-Wave Transceiver Building Blocks Implemented in 200 GHz SiGe Technology , 2004 .

[89]  Wei-Min Lance Kuo,et al.  On the high-temperature (to 300/spl deg/C) characteristics of SiGe HBTs , 2004, IEEE Transactions on Electron Devices.

[90]  R. Reed,et al.  Proton Response of 4th-Generation 350 GHz UHV/CVD SiGe HBTs , 2004 .

[91]  T. Adam,et al.  SiGe HBTs for millimeter-wave applications with simultaneously optimized f/sub T/ and f/sub max/ of 300 GHz , 2004, 2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems. Digest of Papers.

[92]  Wei-Min Lance Kuo,et al.  Proton tolerance of advanced SiGe HBTs fabricated on different substrate materials , 2004, IEEE Transactions on Nuclear Science.

[93]  J. Cressler,et al.  A New Negative-Differential-Resistance Effect in 350 GHz SiGe HBTs Operating at Cryogenic Temperatures , 2005, 2005 International Semiconductor Device Research Symposium.

[94]  S. Pruvost,et al.  Microwave and noise performance of SiGe BiCMOS HBT under cryogenic temperatures , 2005, IEEE Electron Device Letters.

[95]  J. Cressler Silicon Heterostructure Handbook : Materials, Fabrication, Devices, Circuits and Applications of SiGe and Si Strained-Layer Epitaxy , 2005 .

[96]  Chang-Ho Lee,et al.  Cryogenic operation of third-generation, 200-GHz peak-f/sub T/, silicon-germanium heterojunction bipolar transistors , 2005, IEEE Transactions on Electron Devices.

[97]  Jin Cai,et al.  Proton radiation effects in vertical SiGe HBTs fabricated on CMOS-compatible SOI , 2005, IEEE Transactions on Nuclear Science.

[98]  J. Cressler,et al.  Analysis and understanding of unique cryogenic phenomena in state-of-the-art SiGe HBTs , 2006 .