Elements of computational fluid dynamics on block structured grids using implicit solvers

Abstract This paper reviews computational fluid dynamics (CFD) for aerodynamic applications. The key elements of a rigorous CFD analysis are discussed. Modelling issues are summarised and the state of modern discretisation schemes considered. Implicit solution schemes are discussed in some detail, as is multiblock grid generation. The cost and availability of computing power is described in the context of cluster computing and its importance for CFD. Several complex applications are then considered in light of these simulation components. Verification and validation is presented for each application and the important flow mechanisms are shown through the use of the simulation results. The applications considered are: cavity flow, spiked body supersonic flow, underexpanded jet shock wave hysteresis, slender body aerodynamics and wing flutter. As a whole the paper aims to show the current strengths and limitations of CFD and the conclusions suggest a way of enhancing the usefulness of flow simulation for industrial class problems.

[1]  Ethiraj Venkatapathy,et al.  Computational Aerothermodynamic Design Issues for Hypersonic Vehicles , 1997 .

[2]  C. G. Speziale On nonlinear K-l and K-ε models of turbulence , 1987, Journal of Fluid Mechanics.

[3]  R. N. Desmarais,et al.  Interpolation using surface splines. , 1972 .

[4]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[5]  Bryan E. Richards,et al.  Demonstration of cluster computing for three-dimensional CFD simulations , 1999 .

[6]  P. Roache Verification of Codes and Calculations , 1998 .

[7]  Mark E. M. Stewart,et al.  A multiblock grid generation technique applied to a jet engine configuration , 1992 .

[8]  J. Rossiter Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds , 1964 .

[9]  Ken Badcock,et al.  A Parallel 3D Fully Implicit Unsteady Multiblock CFD Code Implemented on a Beowulf Cluster , 2000 .

[10]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[11]  Ken Badcock,et al.  An unfactored implicit moving mesh method for the two-dimensional unsteady N-S equations , 1996 .

[12]  S. Osher,et al.  Uniformly High-Order Accurate Nonoscillatory Schemes. I , 1987 .

[13]  Ken Badcock,et al.  Solution of the unsteady Euler equations in three dimensions using a fully unfactored method , 1999 .

[14]  Bharat K. Soni,et al.  The National Grid Project: A system overview , 1995 .

[15]  John F. Dannenhoffer Automatic blocking for complex three-dimensional configurations , 1995 .

[16]  Ken Badcock,et al.  A grid deformation technique for unsteady flow computations , 2000 .

[17]  Timothy J. Barth,et al.  Analysis of implicit local linearization techniques for upwind and TVD algorithms , 1987 .

[18]  Timothy J. Baker,et al.  Three dimensional mesh generation by triangulation of arbitrary point sets , 1987 .

[19]  Oddvar O. Bendiksen,et al.  Nonlinear aspects of the transonic aeroelastic stability problem , 1988 .

[20]  Hans G. Hornung,et al.  Regular and Mach Reflection of Shock Waves , 1986 .

[21]  P. D. Thomas,et al.  Direct Control of the Grid Point Distribution in Meshes Generated by Elliptic Equations , 1980 .

[22]  Brian Launder,et al.  Second-moment closure: present… and future? , 1989 .

[23]  Ken Badcock,et al.  Numerical Study of Shock-Reflection Hysteresis in an Underexpanded Jet , 2000 .

[24]  Chi-Wang Shu,et al.  High Order ENO and WENO Schemes for Computational Fluid Dynamics , 1999 .

[25]  Ken Badcock,et al.  Towards automatic multiblock topology generation , 1999 .

[26]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[27]  Ken Badcock,et al.  Implicit time-stepping methods for the Navier-Stokes equations , 1996 .

[28]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[29]  Ken Badcock,et al.  Investigation of Sequencing Effects on the Simulation of Fluid-Structure Interaction , 1999 .

[30]  D. J. Maull,et al.  Hypersonic flow over axially symmetric spiked bodies , 1960, Journal of Fluid Mechanics.

[31]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[32]  M. A. Leschziner,et al.  Computational modelling of shock wave/boundary layer interaction with a cell-vertex scheme and transport models of turbulence , 1993, The Aeronautical Journal (1968).

[33]  Neil D. Sandham,et al.  Direct simulation of turbulence using massively parallel computers , 1997, Parallel CFD.

[34]  William L. Oberkampf,et al.  Issues in Computational Fluid Dynamics Code Verification and Validation , 1997 .

[35]  Nigel P. Weatherill,et al.  Automatic topology generation for multiblock grids , 1992 .

[36]  Kari Appa,et al.  Finite-surface spline , 1989 .

[37]  Ken Badcock,et al.  A partially implicit method for simulating viscous aerofoil flows , 1994 .

[38]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .

[39]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[40]  O. Axelsson Iterative solution methods , 1995 .

[41]  Irwin E. Vas,et al.  Preliminary Investigations of Spiked Bodies at Hypersonic Speeds , 1959 .

[42]  Z Wang,et al.  Critical evaluation of conservative and non-conservative interface treatment for Chimera grids , 1995 .

[43]  John C. Tannehill,et al.  Parabolized reduced Navier-Stokes computational techniques , 1992 .

[44]  H. Lomax,et al.  Thin-layer approximation and algebraic model for separated turbulent flows , 1978 .

[45]  N. Ron-Ho,et al.  A Multiple-Grid Scheme for Solving the Euler Equations , 1982 .

[46]  Lionel L. Levy,et al.  Experimental and Computational Steady and Unsteady Transonic Flows about a Thick Airfoil , 1978 .

[47]  P. Roache QUANTIFICATION OF UNCERTAINTY IN COMPUTATIONAL FLUID DYNAMICS , 1997 .

[48]  R. Pletcher,et al.  Computational Fluid Mechanics and Heat Transfer. By D. A ANDERSON, J. C. TANNEHILL and R. H. PLETCHER. Hemisphere, 1984. 599 pp. $39.95. , 1986, Journal of Fluid Mechanics.

[49]  S. Osher,et al.  Upwind difference schemes for hyperbolic systems of conservation laws , 1982 .

[50]  Armin Wulf,et al.  Tuned grid generation with ICEM CFD , 1995 .

[51]  K. Nakahashi,et al.  Self-adaptive-grid method with application to airfoil flow , 1987 .

[52]  V. Venkatakrishnan Convergence to steady state solutions of the Euler equations on unstructured grids with limiters , 1995 .

[53]  Brian J Gribben Application of the multiblock method in computational aerodynamics , 1998 .

[54]  D. Mavriplis Three dimensional unstructured multigrid for the Euler equations , 1991 .

[55]  N. Qin,et al.  Linear and non-linear turbulence models for shock-wave/turbulent boundary-layer interaction using a strongly coupled approach , 1998 .

[56]  R. Ni A multiple grid scheme for solving the Euler equations , 1981 .

[57]  Robert Meakin A new method for establishing intergrid communication among systems of overset grids , 1991 .

[58]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[59]  Ken Badcock,et al.  Implicit method for the time marching analysis of flutter , 2001 .

[60]  Joe F. Thompson,et al.  Aspects of numerical grid generation - Current science and art , 1993 .

[61]  R. M. Zacharias,et al.  Using hundreds of workstations for production running of parallel CFD applications , 1996 .

[62]  L. D. Kral Recent experience with different turbulence models applied to the calculation of flow over aircraft components , 1998 .

[63]  John F. Dannenhoffer A technique for optimizing grid blocks , 1995 .

[64]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[65]  E C Yates,et al.  AGARD Standard Aeroelastic Configurations for Dynamic Response I - Wing 445.6 , 1988 .

[66]  W. J. Gordon,et al.  Construction of curvilinear co-ordinate systems and applications to mesh generation , 1973 .

[67]  Ken Badcock,et al.  Simulation of unsteady turbulent flows around moving aerofoils using the pseudo-time method , 2000 .

[68]  P. Roe CHARACTERISTIC-BASED SCHEMES FOR THE EULER EQUATIONS , 1986 .

[69]  Andrew M. Wissink,et al.  Unsteady aerodynamic simulation of static and moving bodies using scalable computers , 1999 .

[70]  Bryan E. Richards,et al.  A data exchange method for fluid-structure interaction problems , 2001 .

[71]  A. Jameson Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings , 1991 .

[72]  R. F. Warming,et al.  An Implicit Factored Scheme for the Compressible Navier-Stokes Equations , 1977 .

[73]  Hanno H. Heller,et al.  The physical mechanism of flow-induced pressure fluctuations in cavities and concepts for their suppression , 1975 .

[74]  Michael Allen Kenworthy A study of unstable axisymmetric separation in high speed flows , 1978 .

[75]  Dean R. Chapman,et al.  Computational Aerodynamics Development and Outlook , 1979 .

[76]  Scott Eberhardt,et al.  Automatic multi-block grid generation for high-lift configuration wings , 1995 .

[77]  Ken Badcock,et al.  Numerical simulation of a pulsating flow arising over an axisymmetric spiked blunt body at Mach 2.21 and Mach 6.00 , 2000 .

[78]  I. Jadic,et al.  Interfacing of Fluid and Structural Models via Innovative Structural Boundary Element Method , 1998 .

[79]  C. Fletcher Computational techniques for fluid dynamics , 1992 .

[80]  Ken Badcock,et al.  A preconditioner for steady two‐dimensional turbulent flow simulation , 1996 .

[81]  Rainald Löhner Generation of unstructured grids suitable for RANS calculations , 1999 .