Topological complexity of smooth random functions
暂无分享,去创建一个
Robert J. Adler | École d'été de probabilités de Saint-Flour | R. Adler | Jonathan E. Taylor | Jonathan Taylor
[1] Jonathan E. Taylor,et al. Random fields and the geometry of Wiener space , 2011, 1105.3839.
[2] Jose H. Blanchet,et al. Efficient Monte Carlo for high excursions of Gaussian random fields , 2010, 1005.0812.
[3] Omer Bobrowski,et al. EULER INTEGRATION OF GAUSSIAN RANDOM FIELDS AND PERSISTENT HOMOLOGY , 2010, 1003.5175.
[4] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[5] W. Marsden. I and J , 2012 .
[6] Moo K. Chung,et al. Topological Data Analysis , 2012 .
[7] École d'été de probabilités de Saint-Flour,et al. Topological Complexity of Smooth Random Functions: École d'Été de Probabilités de Saint-Flour XXXIX-2009 , 2011 .
[8] F. Flandoli. Random perturbation of PDEs and fluid dynamic models , 2011 .
[9] Herbert K. H. Lee,et al. Gaussian Processes , 2011, International Encyclopedia of Statistical Science.
[10] Karl J. Friston,et al. Topological inference for EEG and MEG , 2010, 1011.2901.
[11] R. Adler,et al. Persistent homology for random fields and complexes , 2010, 1003.1001.
[12] Karl J. Friston,et al. Topological FDR for neuroimaging , 2010, NeuroImage.
[13] M. Broué. Introduction to Complex Reflection Groups and Their Braid Groups , 2010 .
[14] O. Barndorff-Nielsen,et al. Lévy Matters I , 2010 .
[15] D. Schleicher,et al. Holomorphic Dynamical Systems , 2010 .
[16] A. Melchiorri,et al. BOOMERanG constraints on primordial non-Gaussianity from analytical Minkowski functionals , 2009, 0905.4301.
[17] J. Azaïs,et al. Level Sets and Extrema of Random Processes and Fields , 2009 .
[18] Gunnar E. Carlsson,et al. Topology and data , 2009 .
[19] Karl J. Friston,et al. False discovery rate revisited: FDR and topological inference using Gaussian random fields , 2009, NeuroImage.
[20] Euler Characteristics and Maxima of Oceanic Sea States , 2009 .
[21] J. M. Urbano. The Method of Intrinsic Scaling: A Systematic Approach to Regularity for Degenerate and Singular PDEs , 2008 .
[22] Changbom Park,et al. Genus Topology of Structure in the Sloan Digital Sky Survey: Model Testing , 2006, astro-ph/0610762.
[23] Vincenzo Capasso,et al. Multiscale problems in the life sciences : from microscopic to macroscopic : lectures given at the Banach Center and C.I.M.E. joint summer school held in Bȩdlewo, Poland, September 4-9, 2006 , 2008 .
[24] G. Tian,et al. Symplectic 4-Manifolds and Algebraic Surfaces , 2008 .
[25] Olivier Wittenberg. Intersections de deux quadriques et pinceaux de courbes de genre 1 = Intersections of two quadrics and pencils of curves of genus 1 , 2015, 1502.04462.
[26] Y. Benjamini,et al. False Discovery Rates for Spatial Signals , 2007 .
[27] R. Ghrist. Barcodes: The persistent topology of data , 2007 .
[28] K. Worsley,et al. Detecting Sparse Signals in Random Fields, With an Application to Brain Mapping , 2007 .
[29] V. Berinde. Iterative Approximation of Fixed Points , 2007 .
[30] R. Adler,et al. Random Fields and Geometry , 2007 .
[31] Afra Zomorodian,et al. The Theory of Multidimensional Persistence , 2007, SCG '07.
[32] M. Dennis,et al. Nodal densities of planar gaussian random waves , 2007 .
[33] Vin de Silva,et al. Coverage in sensor networks via persistent homology , 2007 .
[34] Korea,et al. Genus topology of the cosmic microwave background from the WMAP 3-year data , 2006, astro-ph/0610764.
[35] 作間 誠,et al. Punctured torus groups and 2-bridge knot groups (I) , 2007 .
[36] Peter Bubenik,et al. A statistical approach to persistent homology , 2006, math/0607634.
[37] J. Peacock,et al. Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.
[38] D. Applebaum,et al. From classical probability to quantum stochastic calculus , 2005 .
[39] Vin de Silva,et al. HOMOLOGICAL SENSOR NETWORKS , 2005 .
[40] R. Nagel,et al. Functional Analytic Methods for Evolution Equations , 2004 .
[41] I. Verdinelli,et al. False Discovery Control for Random Fields , 2004 .
[42] W. Reichel. Uniqueness Theorems For Variational Problems By The Method Of Transformation Groups , 2004 .
[43] M. Qian,et al. Mathematical Theory of Nonequilibrium Steady States: On the Frontier of Probability and Dynamical Systems , 2004 .
[44] D. Zaitsev,et al. Real methods in complex and CR geometry , 2004 .
[45] Daniel Hug,et al. Kinematic and Crofton formulae of integral geometry: recent variants and extensions , 2004 .
[46] Akimichi Takemura,et al. MATHEMATICAL ENGINEERING TECHNICAL REPORTS Validity of the expected Euler characteristic heuristic , 2003 .
[47] Robert J. Adler,et al. Euler characteristics for Gaussian fields on manifolds , 2003 .
[48] Jonathan E. Taylor. A gaussian kinematic formula , 2006, math/0602545.
[49] L. Bröcker,et al. Lipschitz-Killing invariants , 2002 .
[50] Akimichi Takemura,et al. ON THE EQUIVALENCE OF THE TUBE AND EULER CHARACTERISTIC METHODS FOR THE DISTRIBUTION OF THE MAXIMUM OF GAUSSIAN FIELDS OVER PIECEWISE SMOOTH DOMAINS , 2002 .
[51] R. Ghrist,et al. Finding Topology in a Factory: Configuration Spaces , 2000, Am. Math. Mon..
[52] T. O’Neil. Geometric Measure Theory , 2002 .
[53] K. Worsley. Testing for signals with unknown location and scale in a χ2 random field, with an application to fMRI , 2001, Advances in Applied Probability.
[54] A. W. van der Vaart,et al. Uniform Central Limit Theorems , 2001 .
[55] M. Pflaum. Analytic and geometric study of stratified spaces , 2001 .
[56] L. Bröcker,et al. Integral Geometry of Tame Sets , 2000 .
[57] Karl J. Friston,et al. A test for a conjunction , 2000 .
[58] R. Adler. On excursion sets, tube formulas and maxima of random fields , 2000 .
[59] P. McMullen. INTRODUCTION TO GEOMETRIC PROBABILITY , 1999 .
[60] K. Gorski,et al. Minkowski functionals used in the morphological analysis of cosmic microwave background anisotropy maps , 1997, astro-ph/9710185.
[61] Étale Groupoids,et al. Homology Theory , 2009 .
[62] Keith J. Worsley,et al. The Geometry of Random Images , 1996 .
[63] Vladimir I. Piterbarg,et al. Asymptotic Methods in the Theory of Gaussian Processes and Fields , 1995 .
[64] K. Worsley,et al. Boundary corrections for the expected Euler characteristic of excursion sets of random fields, with an application to astrophysics , 1995, Advances in Applied Probability.
[65] K. Worsley. Estimating the number of peaks in a random field using the Hadwiger characteristic of excursion sets, with applications to medical images , 1995 .
[66] D. Siegmund,et al. Testing for a Signal with Unknown Location and Scale in a Stationary Gaussian Random Field , 1995 .
[67] M. Lifshits. Gaussian Random Functions , 1995 .
[68] K. Worsley,et al. Local Maxima and the Expected Euler Characteristic of Excursion Sets of χ 2, F and t Fields , 1994, Advances in Applied Probability.
[69] Changbom Park,et al. Topological analysis of the CfA redshift survey , 1994 .
[70] R. Schneider. Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .
[71] Jiayang Sun. Tail probabilities of the maxima of Gaussian random fields , 1993 .
[72] Alan C. Evans,et al. Anatomical mapping of functional activation in stereotactic coordinate space , 1992, NeuroImage.
[73] Alan C. Evans,et al. Language localization with activation positron emission tomography scanning. , 1992, Neurosurgery.
[74] Steffen L. Lauritzen,et al. Finite de Finetti theorems in linear models and multivariate analysis , 1992 .
[75] M. Talagrand,et al. Probability in Banach Spaces: Isoperimetry and Processes , 1991 .
[76] G. F. Roach,et al. Inverse problems and imaging , 1991 .
[77] Iain M. Johnstone,et al. Hotelling's Theorem on the Volume of Tubes: Some Illustrations in Simultaneous Inference and Data Analysis , 1990 .
[78] R. Adler. An introduction to continuity, extrema, and related topics for general Gaussian processes , 1990 .
[79] D. Siegmund,et al. On Hotelling's Approach to Testing for a Nonlinear Parameter in Regression , 1989 .
[80] D. Aldous. Probability Approximations via the Poisson Clumping Heuristic , 1988 .
[81] M. Goresky,et al. Stratified Morse theory , 1988 .
[82] D. Freedman,et al. A dozen de Finetti-style results in search of a theory , 1987 .
[83] J. Gott,et al. The Sponge-like Topology of Large-Scale Structure in the Universe , 1986 .
[84] Correction: On the Average Number of Real Roots of a Random Algebraic Equation , 1987 .
[85] M. Wschebor. Surfaces aléatoires : mesure géométrique des ensembles de niveau , 1985 .
[86] A. Gorin. ON THE VOLUME OF TUBES , 1983 .
[87] R. Adler,et al. The Geometry of Random Fields , 1982 .
[88] W. J. Thron,et al. Encyclopedia of Mathematics and its Applications. , 1982 .
[89] J. Kuelbs. Probability on Banach spaces , 1978 .
[90] L. Santaló. Integral geometry and geometric probability , 1976 .
[91] Richard M. Dudley,et al. Sample Functions of the Gaussian Process , 1973 .
[92] G. Lindgren. Local maxima of Gaussian fields , 1972 .
[93] R. Dudley. The Sizes of Compact Subsets of Hilbert Space and Continuity of Gaussian Processes , 1967 .
[94] Shiing-Shen Chern,et al. On the Kinematic Formula in Integral Geometry , 1966 .
[95] D. Slepian,et al. Large Excursions of Gaussian Processes , 1959 .
[96] Gerald M. White. Zeros of Gaussian Noise , 1958 .
[97] A. M. Walker. Statistical Analysis of a Random, Moving Surface , 1957, Nature.
[98] H. Hadwiger. Vorlesungen über Inhalt, Oberfläche und Isoperimetrie , 1957 .
[99] S. Rice. Mathematical analysis of random noise , 1944 .
[100] S. Rice. The Distribution of the Maxima of a Random Curve , 1939 .
[101] H. Hotelling. Tubes and Spheres in n-Spaces, and a Class of Statistical Problems , 1939 .
[102] R. Ho. Algebraic Topology , 2022 .
[103] H. Edelsbrunner,et al. Persistent Homology — a Survey , 2022 .