Self-consistent 3J coupling analysis for the joint calibration of Karplus coefficients and evaluation of torsion angles

The concept of self-consistent J coupling evaluation exploits redundant structure information inherent in large sets of 3J coupling constants. Application to the protein Desulfovibrio vulgaris flavodoxin demonstrates the simultaneous refinement of torsion-angle values and related Karplus coefficients. The experimental basis includes quantitative coupling constants related to the polypeptide backbone φ torsion originating from a variety of heteronuclear 2D and 3D NMR correlation experiments, totalling 124 3J(HN,Hα), 129 3J(HN,C′), 121 3J(HN,Cβ), 128 3J(C′i−1,Hαi), 121 3J(C′i−1,C′i), and 122 3J(C′i−1,Cβi). Without prior knowledge from either X-ray crystallography or NMR data, such as NOE distance constraints, accurate φ dihedral angles are specified for 122 non-glycine and non-proline residues out of a total of 147 amino acids. Different models of molecular internal mobility are considered. The Karplus coefficients obtained are applicable to the conformational analysis of φ torsions in other polypeptides.

[1]  Martin Karplus,et al.  Vicinal Proton Coupling in Nuclear Magnetic Resonance , 1963 .

[2]  V. Bystrov Spin—spin coupling and the conformational states of peptide systems , 1976 .

[3]  K. Wüthrich,et al.  Analysis of the 1H‐NMR spectra of ferrichrome peptides. II. The amide resonances , 1978 .

[4]  M. Llinás,et al.  1H‐15N Spin–spin couplings in alumichrome , 1978 .

[5]  M. Llinás,et al.  Complete assignment of carbon signals in a stereospecific peptide via selective and single off-resonance proton decoupling experiments. Analysis of the carbon-13 nuclear magnetic resonance spectrum of alumichrome at 67.88 MHz. , 1979, Biochemistry.

[6]  Torsion angles in the cystine bridge of oxytocin in aqueous solution. Measurements of circumjacent vicinal couplings between proton, carbon-13, and nitrogen-15 , 1980 .

[7]  O Jardetzky,et al.  On the nature of molecular conformations inferred from high-resolution NMR. , 1980, Biochimica et biophysica acta.

[8]  F. D. Leeuw,et al.  The relationship between proton-proton NMR coupling constants and substituent electronegativities—I : An empirical generalization of the karplus equation , 1980 .

[9]  C. Altona,et al.  Relationship between proton–proton nmr coupling constants and substituent electronegativities. III. Conformational analysis of proline rings in solution using a generalized Karplus equation , 1981 .

[10]  M. Billeter,et al.  Calibration of the angular dependence of the amide proton-Cα proton coupling constants, 3JHNα, in a globular protein: Use of 3JHNα for identification of helical secondary structure , 1984 .

[11]  M. Karplus,et al.  Vicinal coupling constants and protein dynamics. , 1985, Biochemistry.

[12]  K. Wüthrich NMR of proteins and nucleic acids , 1988 .

[13]  S. Ghisla,et al.  Mechanisms of flavoprotein-catalyzed reactions. , 1989, European journal of biochemistry.

[14]  G. Curley,et al.  Redox and flavin-binding properties of recombinant flavodoxin from Desulfovibrio vulgaris (Hildenborough). , 1991, European journal of biochemistry.

[15]  K Wüthrich,et al.  Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. , 1991, Journal of molecular biology.

[16]  F. Mȕller Chemistry and Biochemistry of Flavoenzymes: Volume I , 1991 .

[17]  Martin Karplus,et al.  Molecular dynamics simulations with experimental restraints , 1991 .

[18]  F M Poulsen,et al.  Accurate measurements of coupling constants from two-dimensional nuclear magnetic resonance spectra of proteins and determination of phi-angles. , 1991, Journal of molecular biology.

[19]  K D Watenpaugh,et al.  Comparison of the crystal structures of a flavodoxin in its three oxidation states at cryogenic temperatures. , 1993, Journal of molecular biology.

[20]  H. Kessler,et al.  Combined use of homo‐ and heteronuclear coupling constants as restraints in molecular dynamics simulations , 1992, Biopolymers.

[21]  M. Billeter,et al.  Precise vicinal coupling constants3JHNα in proteins from nonlinear fits of J-modulated [15N,1H]-COSY experiments , 1992 .

[22]  Ad Bax,et al.  Quantitative J correlation: a new approach for measuring homonuclear three-bond J(HNH.alpha.) coupling constants in 15N-enriched proteins , 1993 .

[23]  G. Roberts,et al.  NMR of macromolecules : a practical approach , 1993 .

[24]  G. Curley,et al.  Homonuclear and heteronuclear NMR studies of oxidized Desulfovibrio vulgaris flavodoxin. Sequential assignments and identification of secondary structure elements. , 1993, European journal of biochemistry.

[25]  R Brüschweiler,et al.  Conformational backbone dynamics of the cyclic decapeptide antamanide. Application of a new multiconformational search algorithm based on NMR data. , 1993, Biochemistry.

[26]  H. Schwalbe,et al.  Conformation of valine side chains in ribonuclease T1 determined by NMR studies of homonuclear and heteronuclear 3J coupling constants. , 1994, Biochemistry.

[27]  S. Grzesiek,et al.  Measurement of homo- and heteronuclear J couplings from quantitative J correlation. , 1994, Methods in enzymology.

[28]  P E Wright,et al.  Use of chemical shifts and coupling constants in nuclear magnetic resonance structural studies on peptides and proteins. , 1994, Methods in enzymology.

[29]  S. Grzesiek,et al.  Measurement of HN-Hα J couplings in calcium-free calmodulin using new 2D and 3D water-flip-back methods , 1994, Journal of biomolecular NMR.

[30]  D. Case,et al.  Adding Harmonic Motion to the Karplus Relation for Spin-Spin Coupling , 1994 .

[31]  A. Bax,et al.  Reparametrization of the Karplus Relation for 3J(H.alpha.-N) and 3J(HN-C') in Peptides from Uniformly 13C/15N-Enriched Human Ubiquitin , 1995 .

[32]  H. Kessler,et al.  SKALARE KOPPLUNGEN : IHRE ANALYSE UND IHRE VERWENDUNG ZUR STRUKTURAUFKLARUNG , 1995 .

[33]  Heinz Rüterjans,et al.  (H)NCAHA and (H)CANNH experiments for the determination of vicinal coupling constants related to the ϕ-torsion angle , 1995 .

[34]  R. R. Ernst,et al.  Determination of heteronuclear three-bond J-coupling constants in peptides by a simple heteronuclear relayed E.COSY experiment , 1995, Journal of biomolecular NMR.

[35]  F. Löhr,et al.  NMR investigation of the solution conformation of oxidized flavodoxin from Desulfovibrio vulgaris. Determination of the tertiary structure and detection of protein-bound water molecules. , 1996, European journal of biochemistry.

[36]  Ad Bax,et al.  Measurement of Three-Bond 13C−13C J Couplings between Carbonyl and Carbonyl/Carboxyl Carbons in Isotopically Enriched Proteins , 1996 .

[37]  A. Bax,et al.  Determination of the Backbone Dihedral Angles φ in Human Ubiquitin from Reparametrized Empirical Karplus Equations , 1996 .

[38]  Heinz Rüterjans,et al.  Heteronuclear relayed E.COSY applied to the determination of accurate 3J(HN,C′) and 3J(Hβ,C′) coupling constants in Desulfovibrio vulgaris flavodoxin , 1996, Journal of biomolecular NMR.

[39]  Conformational Equilibria in Polypeptides. I. Determination of Accurate3JHCCoupling Constants in Antamanide by 2D NMR Multiplet Simulation , 1997 .

[40]  F. Löhr,et al.  Application of H(N)CA,CO-E.COSY experiments for calibrating the φ angular dependences of vicinal couplings J(C′i−1,Hiα), J(C′i−1,Ciβ) and J(C′i−1,C′i) in proteins , 1997 .

[41]  Conformational Equilibria in Polypeptides. II. Dihedral-Angle Distribution in Antamanide Based on Three-Bond Coupling Information , 1997 .

[42]  K. Wüthrich,et al.  Torsion angle dynamics for NMR structure calculation with the new program DYANA. , 1997, Journal of molecular biology.

[43]  A. Bax,et al.  Determination of φ and χ1 Angles in Proteins from 13C−13C Three-Bond J Couplings Measured by Three-Dimensional Heteronuclear NMR. How Planar Is the Peptide Bond? , 1997 .

[44]  F. Löhr,et al.  Quantitative f torsion angle analysis in Desulfovibrio vulgaris flavodoxin based on six f related 3J couplings , 1998, European Biophysics Journal.

[45]  A. Bax,et al.  Measurement of Three-bond, 13C′-13Cβ J Couplings in Human Ubiquitin by a Triple Resonance, E. COSY-type NMR Technique , 1998, Journal of biomolecular NMR.

[46]  F. Löhr,et al.  Alternative E.COSY techniques for the measurement of 3J(Ci′−1,Ciβ) and 3J(HiN,Ciβ) coupling constants in proteins , 1999, Journal of biomolecular NMR.