Visualizing Co-Phylogenetic Reconciliations

We introduce a hybrid metaphor for the visualization of the reconciliations of co-phylogenetic trees, that are mappings among the nodes of two trees. The typical application is the visualization of the co-evolution of hosts and parasites in biology. Our strategy combines a space-filling and a node-link approach. Differently from traditional methods, it guarantees an unambiguous and ‘downward’ representation whenever the reconciliation is time-consistent (i.e., meaningful). We address the problem of the minimization of the number of crossings in the representation, by giving a characterization of planar instances and by establishing the complexity of the problem. Finally, we propose heuristics for computing representations with few crossings.

[1]  Bengt Sennblad,et al.  primetv: a viewer for reconciled trees , 2006, BMC Bioinformatics.

[2]  Ioannis G. Tollis,et al.  Algorithms for Visualizing Phylogenetic Networks , 2016, GD.

[3]  Vincent Berry,et al.  SylvX: a viewer for phylogenetic tree reconciliations , 2016, Bioinform..

[4]  Michael T. Hallett,et al.  Simultaneous Identification of Duplications and Lateral Gene Transfers , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[5]  Alexander Wolff,et al.  Drawing Binary Tanglegrams: An Experimental Evaluation , 2008, ALENEX.

[6]  Magnus Wahlström,et al.  A Faster Fixed-Parameter Approach to Drawing Binary Tanglegrams , 2009, IWPEC.

[7]  Adrian Rusu,et al.  Tree Drawing Algorithms , 2013, Handbook of Graph Drawing and Visualization.

[8]  Daniel Merkle,et al.  Time-consistent reconciliation maps and forbidden time travel , 2017, Algorithms for Molecular Biology.

[9]  Giuseppe Di Battista,et al.  Drawing Trees, Outerplanar Graphs, Series-Parallel Graphs, and Planar Graphs in a Small Area , 2013 .

[10]  Daniel H. Huson,et al.  Tanglegrams for rooted phylogenetic trees and networks , 2011, Bioinform..

[11]  Michael Kaufmann,et al.  Comparing trees via crossing minimization , 2010, J. Comput. Syst. Sci..

[12]  Tim Dwyer,et al.  Optimal Leaf Ordering for Two and a Half Dimensional Phylogenetic Tree Visualisation , 2004, InVis.au.

[13]  Hans-Jörg Schulz,et al.  Treevis.net: A Tree Visualization Reference , 2011, IEEE Computer Graphics and Applications.

[14]  Pierluigi Crescenzi,et al.  EUCALYPT: efficient tree reconciliation enumerator , 2015, Algorithms for Molecular Biology.

[15]  Matthias Bernt,et al.  Cophylogenetic Reconciliation with ILP , 2015, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[16]  M. Charleston,et al.  Jungles: a new solution to the host/parasite phylogeny reconciliation problem. , 1998, Mathematical biosciences.

[17]  Alexander Wolff,et al.  Drawing (Complete) Binary Tanglegrams , 2008, Graph Drawing.

[18]  Dannie Durand,et al.  Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees , 2012, Bioinform..

[19]  David Fernández-Baca,et al.  Generalized Binary Tanglegrams: Algorithms and Applications , 2009, BICoB.

[20]  J. B. Kruskal,et al.  Icicle Plots: Better Displays for Hierarchical Clustering , 1983 .

[21]  L. Cai,et al.  Inferring phylogeny and speciation of Gymnosporangium species, and their coevolution with host plants , 2016, Scientific Reports.

[22]  R. Page,et al.  Trees within trees: phylogeny and historical associations. , 1998, Trends in ecology & evolution.

[23]  Ran Libeskind-Hadas,et al.  The Cophylogeny Reconstruction Problem Is NP-Complete , 2011, J. Comput. Biol..