Calculation of residual thermal stress in GaN epitaxial layers grown on technologically important substrates

A detailed investigation of residual thermal stress and misfit strain in GaN epitaxial layers grown on technologically important substrates is performed. The thermal stress is low when GaN is grown on AlN, SiC and Si, and relatively higher when Al2O3 substrate is used. The stress is compressive for AlN and Al2O3 and tensile for Si and SiC substrates. Residual thermal stress analysis was also performed for three layer heterostructures of GaN/AlN/6H-SiC and GaN/AlN/Al2O3. The stress remains the same when a sapphire substrate is used with or without an AlN buffer layer but reduces by an order of magnitude when a 6H-SiC substrate is used with an AlN buffer layer.

[1]  S. J. Berkowitz,et al.  Epitaxial growth and characterization of zinc‐blende gallium nitride on (001) silicon , 1992 .

[2]  E. Brown,et al.  Optoelectronic and Structural Properties of High-Quality GaN Grown by Hydride Vapor Phase Epitaxy , 1995 .

[3]  Theeradetch Detchprohm,et al.  Relaxation Mechanism of Thermal Stresses in the Heterostructure of GaN Grown on Sapphire by Vapor Phase Epitaxy , 1993 .

[4]  H. Morkoç,et al.  GaN grown on hydrogen plasma cleaned 6H‐SiC substrates , 1993 .

[5]  R. M. Park,et al.  Growth of zinc blende‐GaN on β‐SiC coated (001) Si by molecular beam epitaxy using a radio frequency plasma discharge, nitrogen free‐radical source , 1993 .

[6]  Guy Michel Jacob,et al.  Effect of growth parameters on the properties of GaN : Zn epilayers , 1977 .

[7]  S. Koike,et al.  GaN blue light emitting diodes prepared by metalorganic chemical vapor deposition , 1984 .

[8]  Takashi Mukai,et al.  High‐brightness InGaN/AlGaN double‐heterostructure blue‐green‐light‐emitting diodes , 1994 .

[9]  H. Morkoç,et al.  Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies , 1994 .

[10]  R. Reeber,et al.  Thermal expansion and lattice parameters of group IV semiconductors , 1996 .

[11]  E. Gulari,et al.  Hot filament enhanced chemical vapor deposition of AlN thin films , 1991 .

[12]  Hsiang-Lin Liu,et al.  Growth by molecular beam epitaxy and electrical characterization of Si‐doped zinc blende GaN films deposited on β‐SiC coated (001) Si substrates , 1994 .

[13]  Theodore D. Moustakas,et al.  Epitaxial growth of zinc blende and wurtzitic gallium nitride thin films on (001) silicon , 1991 .

[14]  H. B. Huntington The Elastic Constants of Crystals , 1958 .

[15]  R. Reeber,et al.  Thermal Expansion Of GaN And Ain , 1997 .

[16]  H. Amano,et al.  Growth of single crystal GaN substrate using hydride vapor phase epitaxy , 1990 .

[17]  Y. Morimoto,et al.  Vapor Phase Epitaxial Growth of GaN on GaAs , GaP , Si, and Sapphire Substrates from GaBr3 and NH 3 , 1973 .

[18]  Gregory H. Olsen,et al.  Calculated stresses in multilayered heteroepitaxial structures , 1977 .

[19]  G. A. Slack,et al.  MOCVD Growth of GaN on bulk AlN Substrates , 1997 .

[20]  J. J. Tietjen,et al.  THE PREPARATION AND PROPERTIES OF VAPOR‐DEPOSITED SINGLE‐CRYSTAL‐LINE GaN , 1969 .

[21]  R. C. Bradt,et al.  Thermal expansion of the hexagonal (4H) polytype of SiC , 1986 .

[22]  Robert F. Davis,et al.  Growth of cubic phase gallium nitride by modified molecular‐beam epitaxy , 1989 .

[23]  T. Moustakas,et al.  Blue‐violet light emitting gallium nitride p‐n junctions grown by electron cyclotron resonance‐assisted molecular beam epitaxy , 1995 .

[24]  H. J. Mcskimin,et al.  Elastic Moduli of Silicon vs Hydrostatic Pressure at 25.0°C and − 195.8°C , 1964 .

[25]  H. M. Manasevit,et al.  The Use of Metalorganics in the Preparation of Semiconductor Materials IV . The Nitrides of Aluminum and Gallium , 1971 .

[26]  Marc Ilegems,et al.  Electrical properties of n-type vapor-grown gallium nitride , 1973 .

[27]  B. Hahn,et al.  Temperature dependence of stresses in GaN thin films grown on (0001) sapphire: Modeling of thermal stresses , 2001 .

[28]  T. Gustafson,et al.  Single crystal wurtzite GaN on (111) GaAs with AlN buffer layers grown by reactive magnetron sputter deposition , 1993 .

[29]  R. Bradt,et al.  Thermal expansion of the hexagonal (6H) polytype of silicon carbide , 1986 .

[30]  T. Kozawa,et al.  THERMAL STRESS IN GAN EPITAXIAL LAYERS GROWN ON SAPPHIRE SUBSTRATES , 1995 .

[31]  Y. S. Touloukian Thermophysical properties of matter , 1970 .

[32]  Robert F. Davis,et al.  Thermal mismatch stress relaxation via lateral epitaxy in selectively grown GaN structures , 1999 .

[33]  Robert F. Davis,et al.  GaN thin films deposited via organometallic vapor phase epitaxy on α(6H)–SiC(0001) using high‐temperature monocrystalline AlN buffer layers , 1995 .

[34]  A. Sheleg,et al.  Study of the elastic properties of gallium nitride , 1978 .

[35]  Thermal Expansion of β-Sic, Gap and Inp , 1995 .