DNMT and HDAC inhibitors modulate MMP-9-dependent H3 N-terminal tail proteolysis and osteoclastogenesis

[1]  J. Koh,et al.  Regulation of Breast Cancer-Induced Osteoclastogenesis by MacroH2A1.2 Involving EZH2-Mediated H3K27me3. , 2018, Cell reports.

[2]  J. Koh,et al.  MacroH2A1.2 Inhibits Prostate Cancer-induced Osteoclastogenesis through Cooperation with HP1α and H1.2 , 2018, Oncogene.

[3]  T. Ulmer,et al.  H3K27me1 is essential for MMP-9-dependent H3N-terminal tail proteolysis during osteoclastogenesis , 2018, Epigenetics & Chromatin.

[4]  M. Jeffries,et al.  Epigenetics and Bone Remodeling , 2017, Current Osteoporosis Reports.

[5]  T. Ulmer,et al.  MMP-9 facilitates selective proteolysis of the histone H3 tail at genes necessary for proficient osteoclastogenesis , 2016, Genes & development.

[6]  L. Ivashkiv Metabolic-epigenetic coupling in osteoclast differentiation , 2015, Nature Medicine.

[7]  Masaru Ishii,et al.  DNA methyltransferase 3a regulates osteoclast differentiation by coupling to an S-adenosylmethionine–producing metabolic pathway , 2015, Nature Medicine.

[8]  K. Ikeda,et al.  Factors and Mechanisms Involved in the Coupling from Bone Resorption to Formation: How Osteoclasts Talk to Osteoblasts , 2014, Journal of bone metabolism.

[9]  P. Vrtačnik,et al.  Epigenetic mechanisms in bone , 2014, Clinical chemistry and laboratory medicine.

[10]  Nouri Neamati,et al.  VprBP has intrinsic kinase activity targeting histone H2A and represses gene transcription. , 2013, Molecular cell.

[11]  Razvan R. Popovici,et al.  Additional file 8 , 2010 .

[12]  M. Dawson,et al.  Cancer Epigenetics: From Mechanism to Therapy , 2012, Cell.

[13]  S. S. Ajay,et al.  Genome-wide DNA methylation profiles in hematopoietic stem and progenitor cells reveal overrepresentation of ETS transcription factor binding sites , 2012, Genome research.

[14]  H. Aburatani,et al.  Recent Advance in Epigenetics - Application to The Regulation of Osteoclast Differentiation , 2012 .

[15]  H. Takayanagi,et al.  New regulation mechanisms of osteoclast differentiation , 2011, Annals of the New York Academy of Sciences.

[16]  Yi Zhang,et al.  Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. , 2011, Genes & development.

[17]  Peter A. Jones,et al.  A decade of exploring the cancer epigenome — biological and translational implications , 2011, Nature Reviews Cancer.

[18]  Zhike Lu,et al.  Identification of 67 Histone Marks and Histone Lysine Crotonylation as a New Type of Histone Modification , 2011, Cell.

[19]  M. Esteller,et al.  Epigenetic modifications and human disease , 2010, Nature Biotechnology.

[20]  K. Nakahama,et al.  Cellular communications in bone homeostasis and repair , 2010, Cellular and Molecular Life Sciences.

[21]  Liza J. Raggatt,et al.  Cellular and Molecular Mechanisms of Bone Remodeling* , 2010, The Journal of Biological Chemistry.

[22]  Helena Santos-Rosa,et al.  Histone H3 tail clipping regulates gene expression , 2008, Nature Structural &Molecular Biology.

[23]  D. Gold,et al.  Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation , 2008, Nature Genetics.

[24]  Koichi Matsuo,et al.  Osteoclast-osteoblast communication. , 2008, Archives of biochemistry and biophysics.

[25]  T. Kouzarides Chromatin Modifications and Their Function , 2007, Cell.

[26]  P. Becker,et al.  Gene Regulation by Histone H1: New Links to DNA Methylation , 2005, Cell.

[27]  P. M. Das,et al.  DNA methylation and cancer. , 2004, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[28]  R. Baron Arming the osteoclast , 2004, Nature Medicine.

[29]  S. Teitelbaum,et al.  Genetic regulation of osteoclast development and function , 2003, Nature Reviews Genetics.

[30]  David L. Lacey,et al.  Osteoclast differentiation and activation , 2003, Nature.

[31]  T. Takeya,et al.  Large Scale Gene Expression Analysis of Osteoclastogenesisin Vitro and Elucidation of NFAT2 as a Key Regulator* , 2002, The Journal of Biological Chemistry.

[32]  Shigeyoshi Itohara,et al.  Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis , 2000, Nature Cell Biology.

[33]  S. Teitelbaum,et al.  Bone resorption by osteoclasts. , 2000, Science.

[34]  K Yano,et al.  Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[35]  M. Grunstein Histone acetylation in chromatin structure and transcription , 1997, Nature.

[36]  A. Razin,et al.  DNA methylation and genomic imprinting , 1994, Cell.

[37]  Adrian Bird,et al.  The essentials of DNA methylation , 1992, Cell.

[38]  H. Cedar DNA methylation and gene activity , 1988, Cell.

[39]  Howard Cedar,et al.  DNA methylation affects the formation of active chromatin , 1986, Cell.

[40]  J. Loutit,et al.  Osteoclasts derived from haematopoietic stem cells , 1980, Nature.