Flexible and lightweight thermoelectric generators composed of carbon nanotube–polystyrene composites printed on film substrate

A flexible thermoelectric generator (TEG) was fabricated on a polyethylene naphthalate film substrate using a printing process. The thermoelectric material used in this study, a composite material consisting of carbon nanotubes (CNTs) and polystyrene, contained approximately 35 vol. % of voids. Because of the reduction in the density of the CNT–polystyrene composite caused by the voids, the TEG was remarkably lightweight (weight per unit area: ≈15.1 mg/cm2). The TEG generated approximately 55 mW/m2 of power at a temperature difference of 70 °C.

[1]  N. Toshima,et al.  Thermoelectric figure-of-merit of iodine-doped copolymer of phenylenevinylene with dialkoxyphenylenevinylene , 2007 .

[2]  M. Correa‐Duarte,et al.  Layer-by-layer polymer coating of carbon nanotubes: tuning of electrical conductivity in random networks. , 2010, Journal of the American Chemical Society.

[3]  Wenqing Zhang,et al.  Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites. , 2010, ACS nano.

[4]  Kang L. Wang,et al.  Fully printed separated carbon nanotube thin film transistor circuits and its application in organic light emitting diode control. , 2011, Nano letters.

[5]  T. Someya,et al.  A Rubberlike Stretchable Active Matrix Using Elastic Conductors , 2008, Science.

[6]  Robert A. Street,et al.  All jet-printed polymer thin-film transistor active-matrix backplanes , 2004 .

[7]  X. Crispin,et al.  Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). , 2011, Nature materials.

[8]  K. Pernstich,et al.  Field-effect-modulated Seebeck coefficient in organic semiconductors. , 2008, Nature materials.

[9]  Koichiro Ikeda,et al.  Thermoelectric power generation using Li-doped NiO and (Ba, Sr)PbO3 module , 2001 .

[10]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[11]  Gao Min,et al.  Evaluation of thermoelectric modules for power generation , 1998 .

[12]  Kevin C. See,et al.  Solution-deposited sodium beta-alumina gate dielectrics for low-voltage and transparent field-effect transistors. , 2009, Nature materials.

[13]  I. Ivanov,et al.  High Seebeck effects from conducting polymer: Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) based thin-film device with hybrid metal/polymer/metal architecture , 2012 .

[14]  A. Facchetti,et al.  A high-mobility electron-transporting polymer for printed transistors , 2009, Nature.

[15]  G. Gelinck,et al.  Flexible active-matrix displays and shift registers based on solution-processed organic transistors , 2004, Nature materials.

[16]  Choongho Yu,et al.  Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate). , 2010, ACS nano.

[17]  Daoben Zhu,et al.  Organic Thermoelectric Materials and Devices Based on p‐ and n‐Type Poly(metal 1,1,2,2‐ethenetetrathiolate)s , 2012, Advanced materials.

[18]  Kang L. Wang,et al.  Direct atom-by-atom chemical identification of nanostructures and defects of topological insulators. , 2013, Nano letters.

[19]  H. Sirringhaus,et al.  High-Resolution Ink-Jet Printing of All-Polymer Transistor Circuits , 2000, Science.

[20]  R. Funahashi,et al.  A portable thermoelectric-power-generating module composed of oxide devices , 2006 .

[21]  Horacio Dante Espinosa,et al.  Size effects on the mechanical behavior of gold thin films , 2003 .

[22]  Mikkel Jørgensen,et al.  Upscaling of polymer solar cell fabrication using full roll-to-roll processing. , 2010, Nanoscale.

[23]  A. Fina,et al.  Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review , 2011 .

[24]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[25]  Yue Wu,et al.  Flexible nanocrystal-coated glass fibers for high-performance thermoelectric energy harvesting. , 2012, Nano letters.

[26]  Richard Czerw,et al.  Multilayered carbon nanotube/polymer composite based thermoelectric fabrics. , 2012, Nano letters.

[27]  William A. Goddard,et al.  Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes , 1998 .