On Robustness and Domain Adaptation using SVD for Word Sense Disambiguation

In this paper we explore robustness and domain adaptation issues for Word Sense Disambiguation (WSD) using Singular Value Decomposition (SVD) and unlabeled data. We focus on the semi-supervised domain adaptation scenario, where we train on the source corpus and test on the target corpus, and try to improve results using unlabeled data. Our method yields up to 16.3% error reduction compared to state-of-the-art systems, being the first to report successful semi-supervised domain adaptation. Surprisingly the improvement comes from the use of unlabeled data from the source corpus, and not from the target corpora, meaning that we get robustness rather than domain adaptation. In addition, we study the behavior of our system on the target domain.

[1]  Eneko Agirre,et al.  Exploring feature spaces with svd and unlabeled data for Word Sense Disambiguation , 2005 .

[2]  Jordi Girona Salgado An Empirical Study of the Domain Dependence of Supervised Word Sense Disambiguation Systems , 2000 .

[3]  Eneko Agirre,et al.  UBC-ALM: Combining k-NN with SVD for WSD , 2007, SemEval@ACL.

[4]  Geoffrey Leech,et al.  100 Million Words of English:The British National Corpus (BNC) , 1992 .

[5]  Grace Ngai,et al.  Transformation Based Learning in the Fast Lane , 2001, NAACL.

[6]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[7]  Ted Pedersen,et al.  A Decision Tree of Bigrams is an Accurate Predictor of Word Sense , 2001, NAACL.

[8]  S. T. Buckland,et al.  Computer-Intensive Methods for Testing Hypotheses. , 1990 .

[9]  Thorsten Joachims,et al.  Making large scale SVM learning practical , 1998 .

[10]  Diana McCarthy,et al.  Domain-Speci(cid:12)c Sense Distributions and Predominant Sense Acquisition , 2022 .

[11]  Carlo Strapparava,et al.  Domain Kernels for Word Sense Disambiguation , 2005, ACL.

[12]  John Blitzer,et al.  Domain Adaptation with Structural Correspondence Learning , 2006, EMNLP.

[13]  Rie Kubota Ando,et al.  Applying Alternating Structure Optimization to Word Sense Disambiguation , 2006, CoNLL.

[14]  Alex Acero,et al.  Adaptation of Maximum Entropy Capitalizer: Little Data Can Help a Lo , 2006, Comput. Speech Lang..

[15]  Mark Stevenson,et al.  The Reuters Corpus Volume 1 -from Yesterday’s News to Tomorrow’s Language Resources , 2002, LREC.

[16]  Daniel Marcu,et al.  Domain Adaptation for Statistical Classifiers , 2006, J. Artif. Intell. Res..

[17]  Eneko Agirre,et al.  One Sense per Collocation and Genre/Topic Variations , 2000, EMNLP.

[19]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[20]  Hal Daumé,et al.  Frustratingly Easy Domain Adaptation , 2007, ACL.

[21]  Martha Palmer,et al.  SemEval-2007 Task-17: English Lexical Sample, SRL and All Words , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[22]  Haym Hirsh,et al.  Using LSI for text classification in the presence of background text , 2001, CIKM '01.

[23]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[24]  Hwee Tou Ng,et al.  Domain Adaptation with Active Learning for Word Sense Disambiguation , 2007, ACL.

[25]  Lluís Màrquez i Villodre,et al.  An Empirical Study of the Domain Dependence of Supervised Word Disambiguation Systems , 2000, EMNLP.