A robust variable order facet model for image data

The underlying piecewise continuous surface of a digital image can be estimated through robust statistical procedures. This paper contains a systematic Monte Carlo study of M estimation and LMS estimation for image surface approximation, an examination of the merits of postprocessing and tuning various parameters in the robust estimation procedures, and a new robust variable order facet model paradigm. Several new goodness-of-fit measures are introduced and systematically compared. We show that the M estimation tuning parameters are not crucial, postprocessing is cheap and well worth the cost, and the robust algorithm for variable order facet models (using M estimation, new statistical goodness-of-fit measures, and postprocessing) manages to retain most of the statistical efficiency of M estimation, yet displays good robustness properties, and preserves the main geometric features of an image surface: step edges, roof edges, and corners.

[1]  Paul Beaudet,et al.  Rotationally invariant image operators , 1978 .

[2]  Lawrence G. Roberts,et al.  Machine Perception of Three-Dimensional Solids , 1963, Outstanding Dissertations in the Computer Sciences.

[3]  Layne T. Watson,et al.  Robust window operators , 2005, Machine Vision and Applications.

[4]  David Shi Chen,et al.  A Data-Driven Intermediate Level Feature Extraction Algorithm , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Robert C. Bolles,et al.  A RANSAC-Based Approach to Model Fitting and Its Application to Finding Cylinders in Range Data , 1981, IJCAI.

[6]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .

[7]  Gerhard Roth,et al.  Segmentation of geometric signals using robust fitting , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[8]  Xinhua Zhuang,et al.  Pose estimation from corresponding point data , 1989, IEEE Trans. Syst. Man Cybern..

[9]  R. Haralick,et al.  A facet model for image data , 1981 .

[10]  Rangasami L. Kashyap,et al.  Robust image modeling techniques with an image restoration application , 1988, IEEE Trans. Acoust. Speech Signal Process..

[11]  Robust inference in regression: a comparative study , 1993 .

[12]  Richard O. Duda,et al.  Use of the Hough transformation to detect lines and curves in pictures , 1972, CACM.

[13]  Rama Chellappa,et al.  Two-dimensional robust spectrum estimation , 1988, IEEE Trans. Acoust. Speech Signal Process..

[14]  Birch B. Jeffrey Some convergence properties of iterated reweighted least squares in the location model , 1980 .

[15]  Ramesh C. Jain,et al.  Segmentation through Variable-Order Surface Fitting , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Doron Mintz Robust consensus based edge detection , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  R. L. Kashyap,et al.  Robust Image Models and Their Applications , 1988 .

[18]  Rama Chellappa,et al.  An iterative algorithm for robust 2-D spectrum estimation , 1984, ICASSP.

[19]  Ramesh C. Jain,et al.  Invariant surface characteristics for 3D object recognition in range images , 1985, Comput. Vis. Graph. Image Process..

[20]  G. Wise,et al.  A theoretical analysis of the properties of median filters , 1981 .

[21]  Jean-Michel Jolion,et al.  Robust Clustering with Applications in Computer Vision , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  W. Föstner Reliability analysis of parameter estimation in linear models with application to mensuration problems in computer vision , 1987 .

[23]  Wolfgang Förstner Reliability analysis of parameter estimation in linear models with applications to mensuration problems in computer vision , 1987, Comput. Vis. Graph. Image Process..

[24]  Manfred H. Hueckel A Local Visual Operator Which Recognizes Edges and Lines , 1973, JACM.

[25]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[26]  Larry S. Davis,et al.  A new class of edge-preserving smoothing filters , 1987, Pattern Recognit. Lett..

[27]  Rama Chellappa,et al.  Edge Detection and Linear Feature Extraction Using a 2-D Random Field Model , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Anil K. Jain,et al.  Segmentation and Classification of Range Images , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Robert M. Haralick,et al.  2D-3D pose estimation , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[30]  R. Haralick,et al.  The Topographic Primal Sketch , 1983 .

[31]  O. Tretiak,et al.  Robust detection of region boundaries in a sequence of images , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[32]  Xinhua Zhuang,et al.  A highly robust estimator for computer vision , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[33]  Thomas S. Huang,et al.  A fast two-dimensional median filtering algorithm , 1979 .

[34]  David B. Cooper,et al.  Bayesian Recognition of Local 3-D Shape by Approximating Image Intensity Functions with Quadric Polynomials , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Azriel Rosenfeld,et al.  Robust regression methods for computer vision: A review , 1991, International Journal of Computer Vision.

[36]  Azriel Rosenfeld,et al.  Noise reduction in three-dimensional digital images , 1984, Pattern Recognit..