Eocene bipolar glaciation associated with global carbon cycle changes

The transition from the extreme global warmth of the early Eocene ‘greenhouse’ climate ∼55 million years ago to the present glaciated state is one of the most prominent changes in Earth's climatic evolution. It is widely accepted that large ice sheets first appeared on Antarctica ∼34 million years ago, coincident with decreasing atmospheric carbon dioxide concentrations and a deepening of the calcite compensation depth in the world's oceans, and that glaciation in the Northern Hemisphere began much later, between 10 and 6 million years ago. Here we present records of sediment and foraminiferal geochemistry covering the greenhouse–icehouse climate transition. We report evidence for synchronous deepening and subsequent oscillations in the calcite compensation depth in the tropical Pacific and South Atlantic oceans from ∼42 million years ago, with a permanent deepening 34 million years ago. The most prominent variations in the calcite compensation depth coincide with changes in seawater oxygen isotope ratios of up to 1.5 per mil, suggesting a lowering of global sea level through significant storage of ice in both hemispheres by at least 100 to 125 metres. Variations in benthic carbon isotope ratios of up to ∼1.4 per mil occurred at the same time, indicating large changes in carbon cycling. We suggest that the greenhouse–icehouse transition was closely coupled to the evolution of atmospheric carbon dioxide, and that negative carbon cycle feedbacks may have prevented the permanent establishment of large ice sheets earlier than 34 million years ago.

[1]  E. Venrick The distribution and significance of Richelia intracellularis Schmidt in the North Pacific Central Gyre1 , 1974 .

[2]  T. H. Andel,et al.  Cenozoic history and paleoceanography of the central equatorial Pacific Ocean: A regional synthesis of Deep Sea Drilling Project data , 1975 .

[3]  Nitrogen Fixation in the Marine Environment , 1982, Science.

[4]  N. Shackleton,et al.  Oxygen and Carbon Isotope Stratigraphy of Deep Sea Drilling Project Hole 552A: Plio-Pleistocene Glacial History , 1984 .

[5]  M. Bender,et al.  Tracers in the Sea , 1984 .

[6]  R. Thunell,et al.  Late Eocene-Early Oligocene Carbonate Sedimentation in the Deep Sea , 1986 .

[7]  J. Pomerol,et al.  Terminal Eocene Events , 1986 .

[8]  R. Fairbanks,et al.  Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion , 1987 .

[9]  B. Wilkinson,et al.  Surface area control of shallow cratonic to deep marine carbonate accumulation , 1988 .

[10]  J. Raven The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources , 1988 .

[11]  E. Boyle,et al.  Tertiary paleoceanic chemical variability: Unintended consequences of simple geochemical models , 1988 .

[12]  K. Fanning Influence of atmospheric pollution on nutrient limitation in the ocean , 1989, Nature.

[13]  B. Wilkinson,et al.  Sedimentary carbonate record of calcium-magnesium cycling , 1989 .

[14]  Daphne E. Lee,et al.  Conflicting isotopic and biotic evidence for tropical sea-surface temperatures during the Tertiary , 1990 .

[15]  L. Peterson,et al.  Late Cenozoic carbonate accumulation and the history of the carbonate compensation depth in the western equatorial Indian Ocean , 1990 .

[16]  J. Kennett,et al.  Paleocene and Eocene kaolinite distribution in the South Atlantic and Southern Ocean: Antarctic climatic and paleoceanographic implications , 1992 .

[17]  J. Zachos,et al.  Early Oligocene ice-sheet expansion on Antarctica: Stable isotope and sedimentological evidence from Kerguelen Plateau, southern Indian Ocean , 1992 .

[18]  J. Hayes,et al.  Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. , 1992, Global biogeochemical cycles.

[19]  E. Maier‐Reimer,et al.  Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration , 1994, Nature.

[20]  C. Carlson,et al.  Carbon-cycle imbalances in the Sargasso Sea , 1994, Nature.

[21]  J. Zachos,et al.  Evolution of Early Cenozoic marine temperatures , 1994 .

[22]  J. G. Kuenen,et al.  Anaerobic oxidation of ammonium is a biologically mediated process , 1995, Applied and environmental microbiology.

[23]  J. Schnoor,et al.  Nitrogen fixation: Anthropogenic enhancement‐environmental response , 1995 .

[24]  J. G. Kuenen,et al.  Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor , 1995 .

[25]  R. Zahn,et al.  Eocene-Oligocene transition in the Southern Ocean: History of water mass circulation and biological productivity , 1996 .

[26]  K. Miller,et al.  Global implications of lower to middle Eocene sequence boundaries on the New Jersey coastal plain: The icehouse cometh , 1996 .

[27]  F. Lipschultz,et al.  An assessment of nitrogen fixation as a source of nitrogen to the North Atlantic Ocean , 1996 .

[28]  L. Kump,et al.  Global Chemical Erosion during the Cenozoic: Weatherability Balances the Budgets , 1997 .

[29]  Edward J. Carpenter,et al.  Trichodesmium, a Globally Significant Marine Cyanobacterium , 1997 .

[30]  Paul G. Falkowski,et al.  Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean , 1997, Nature.

[31]  Ricardo M Letelier,et al.  The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean , 1997, Nature.

[32]  Nicolas Gruber,et al.  Global patterns of marine nitrogen fixation and denitrification , 1997 .

[33]  W. Sunda,et al.  Interrelated influence of iron, light and cell size on marine phytoplankton growth , 1997, Nature.

[34]  Syukuro Manabe,et al.  Simulated response of the ocean carbon cycle to anthropogenic climate warming , 1998, Nature.

[35]  John M. McArthur,et al.  Strontium isotope stratigraphy , 2012 .

[36]  W. Ehrmann Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo Sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics , 1998 .

[37]  Nicholas Christie-Blick,et al.  Cenozoic global sea level, sequences, and the New Jersey Transect: Results From coastal plain and continental slope drilling , 1998 .

[38]  D. H. Robinson,et al.  Phytoplankton community structure and the drawdown of nutrients and CO2 in the southern ocean , 1999, Science.

[39]  K. Flynn,et al.  INTERACTIONS BETWEEN IRON, LIGHT, AMMONIUM, AND NITRATE: INSIGHTS FROM THE CONSTRUCTION OF A DYNAMIC MODEL OF ALGAL PHYSIOLOGY , 1999 .

[40]  P. Boyd,et al.  Co-limitation of phytoplankton growth by light and Fe during winter in the NE subarctic Pacific Ocean , 1999 .

[41]  J. Seppälä,et al.  Experimental evaluation of nutrient limitation of phytoplankton communities in the Gulf of Riga , 1999 .

[42]  Toby Tyrrell,et al.  The relative influences of nitrogen and phosphorus on oceanic primary production , 1999, Nature.

[43]  J. G. Kuenen,et al.  Missing lithotroph identified as new planctomycete , 1999, Nature.

[44]  M. Pahlow,et al.  Temporal trends in deep ocean Redfield ratios. , 2000, Science.

[45]  C. Sweeney,et al.  Seasonal evolution of hydrographic properties in the Ross Sea, Antarctica, 1996-1997 , 2000 .

[46]  H. Elderfield,et al.  Cenozoic deep-Sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite , 2000, Science.

[47]  P. Falkowski Rationalizing elemental ratios in unicellular algae , 2000 .

[48]  P. Pearson,et al.  Atmospheric carbon dioxide concentrations over the past 60 million years , 2000, Nature.

[49]  T. Marchitto,et al.  Zinc concentrations in benthic foraminifera reflect seawater chemistry , 2000 .

[50]  E. Boyle,et al.  Phosphate depletion in the western North Atlantic Ocean. , 2000, Science.

[51]  Paul J. Harrison,et al.  Dynamics of nutrients and phytoplankton biomass in the Pearl River estuary and adjacent waters of Hong Kong during summer : preliminary evidence for phosphorus and silicon limitation , 2000 .

[52]  K. Schleifer,et al.  Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. , 2000, Systematic and applied microbiology.

[53]  C. Gobler,et al.  Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic Ocean , 2001, Nature.

[54]  D. Karl,et al.  Element Stoichiometry, New Production and Nitrogen Fixation , 2001 .

[55]  Victor Smetacek,et al.  A watery arms race , 2001, Nature.

[56]  Andrew Hansen,et al.  Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean , 2001, Nature.

[57]  Hans W. Paerl,et al.  The oceanic fixed nitrogen and nitrous oxide budgets: Moving targets as we enter the anthropocene?* , 2001 .

[58]  Christopher J. Nicholas,et al.  Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs , 2001, Nature.

[59]  R. Howarth,et al.  Strontium Isotope Stratigraphy: LOWESS Version 3: Best Fit to the Marine Sr‐Isotope Curve for 0–509 Ma and Accompanying Look‐up Table for Deriving Numerical Age , 2001, The Journal of Geology.

[60]  D. Beerling,et al.  Paleobotanical evidence for near present-day levels of atmospheric Co2 during part of the tertiary. , 2001, Science.

[61]  J. Snoek,et al.  Co-limitation by iron and light of Chaetoceros brevis, C. dichaeta and C. calcitrans (Bacillariophyceae) , 2001 .

[62]  M. Carr Estimation of potential productivity in Eastern Boundary Currents using remote sensing , 2001 .

[63]  L. Sloan,et al.  Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.

[64]  P. Wilson,et al.  Paleogene Equatorial Transect , 2001 .

[65]  D. Karl,et al.  Seasonal and interannual variability in sources of nitrogen supporting export in the oligotrophic subtropical North Pacific Ocean , 2002 .

[66]  Aradhna K. Tripati,et al.  Late Eocene tropical sea surface temperatures: A perspective from Panama , 2002 .

[67]  Stephen Calvert,et al.  Reduced nitrogen fixation in the glacial ocean inferred from changes in marine nitrogen and phosphorus inventories , 2002, Nature.

[68]  M. Sarnthein,et al.  Quaternary deep sea temperature histories derived from benthic foraminiferal Mg/Ca , 2002 .

[69]  J. Elser,et al.  Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere , 2002 .

[70]  J. Zachos,et al.  Early Cenozoic extreme Climates: The Walvis Ridge transect, Proceedings of the Ocean Drilling Program, Initial reports Leg 208 , 2002 .

[71]  D. Kroon,et al.  Middle Eocene regional climate instability: Evidence from the western North Atlantic , 2002 .

[72]  R. Geider,et al.  Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis , 2002 .

[73]  B. Ward,et al.  Nitrogen Cycling in the Ocean: New Perspectives on Processes and Paradigms , 2002, Applied and Environmental Microbiology.

[74]  T. Tyrrell,et al.  Geochemical evidence of denitrification in the Benguela upwelling system , 2002 .

[75]  D. Schrag,et al.  Application of benthic foraminiferal Mg/Ca ratios to questions of Cenozoic climate change , 2002 .

[76]  David M. Karl,et al.  Dinitrogen fixation in the world's oceans , 2002 .

[77]  Niall C. Slowey,et al.  Benthic foraminiferal Mg/Ca-paleothermometry: a revised core-top calibration , 2002 .

[78]  B. Thamdrup,et al.  Production of N2 through Anaerobic Ammonium Oxidation Coupled to Nitrate Reduction in Marine Sediments , 2002, Applied and Environmental Microbiology.

[79]  D. Bryant The beauty in small things revealed , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[80]  David Pollard,et al.  Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 , 2003, Nature.

[81]  A. Devol Solution to a marine mystery , 2003 .

[82]  Steven M Bohaty,et al.  Significant Southern Ocean warming event in the late middle Eocene , 2003 .

[83]  P. Falkowski,et al.  The evolutionary inheritance of elemental stoichiometry in marine phytoplankton , 2003, Nature.

[84]  J. Zachos,et al.  Tropical sea-surface temperature reconstruction for the early Paleogene using Mg/Ca ratios of planktonic foraminifera , 2003 .

[85]  S. Dyhrman,et al.  Characterization of ectoenzyme activity and phosphate-regulated proteins in the coccolithophorid Emiliania huxleyi , 2003 .

[86]  M. Huber,et al.  Eocene El Niño: Evidence for Robust Tropical Dynamics in the "Hothouse" , 2003, Science.

[87]  J. G. Kuenen,et al.  Anaerobic ammonium oxidation by anammox bacteria in the Black Sea , 2003, Nature.

[88]  M. Voss,et al.  Patterns of nitrogen fixation along 10°N in the tropical Atlantic , 2004 .

[89]  S. Levin,et al.  Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton , 2004, Nature.

[90]  Elena Litchman,et al.  Phytoplankton growth and stoichiometry under multiple nutrient limitation , 2004 .

[91]  M. Okbah,et al.  Trace Metals in the Water Columns of the Red Sea and the Gulf of Aqaba, Egypt , 2004 .

[92]  J. Montoya,et al.  High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean , 2004, Nature.

[93]  E. Ingall,et al.  Distribution and dynamics of various forms of phosphorus in seawater: insights from field observations in the Pacific Ocean and a laboratory experiment , 2004 .

[94]  R. Service New Dead Zone Off Oregon Coast Hints at Sea Change in Currents , 2004, Science.

[95]  K. Miller,et al.  Upper Cretaceous sequences and sea-level history, New Jersey Coastal Plain , 2004 .

[96]  Caroline H. Lear,et al.  Late Eocene to early Miocene ice sheet dynamics and the global carbon cycle , 2004 .

[97]  Nicholas R. Bates,et al.  Excess nitrate and nitrogen fixation in the North Atlantic Ocean , 2004 .

[98]  Cenozoic mass accumulation rates in the equatorial Pacific based on high-resolution mineralogy of Ocean Drilling Program Leg 199 , 2004 .

[99]  J. Cole,et al.  Detection and widespread distribution of the nrfA gene encoding nitrite reduction to ammonia, a short circuit in the biological nitrogen cycle that competes with denitrification. , 2004, FEMS microbiology ecology.

[100]  E. Carpenter,et al.  Nitrogen fixation by Trichodesmium spp.: An important source of new nitrogen to the tropical and subtropical North Atlantic Ocean , 2005 .

[101]  Julie LaRoche,et al.  Importance of the diazotrophs as a source of new nitrogen in the ocean , 2005 .

[102]  L. Mayer,et al.  Arctic Coring Expedition (ACEX): paleoceanographic and tectonic evolution of the central Arctic Ocean , 2005 .

[103]  Caroline H. Lear,et al.  Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean , 2005, Nature.

[104]  Jan Backman,et al.  Biogenic sedimentation in the Eocene equatorial Pacific: the stuttering greenhouse and Eocene carbonate compensation depth , 2005 .

[105]  D. Karl,et al.  Vertical distributions of nitrogen-fixing phylotypes at Stn ALOHA in the oligotrophic North Pacific Ocean , 2005 .

[106]  Pamela A. Matson,et al.  Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean , 2005, Nature.

[107]  R. Amann,et al.  Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[108]  H. Elderfield,et al.  Corrigendum: Eocene bipolar glaciation associated with global carbon cycle changes , 2005, Nature.

[109]  F. Morel,et al.  Zinc availability and alkaline phosphatase activity in Emiliania huxleyi: Implications for Zn‐P co‐limitation in the ocean , 2006 .

[110]  P. Mahadevan,et al.  An overview , 2007, Journal of Biosciences.

[111]  M. Sakata,et al.  High-latitude controls of thermocline nutrients and low latitude biological productivity , 2022 .