Two-level algebraic domain decomposition preconditioners using Jacobi-Schwarz smoother and adaptive coarse grid corrections

We investigate two-level preconditioners on the extended linear system arising from the domain decomposition method. The additive Schwarz method is used as a smoother, and the coarse grid space is constructed by using the Ritz vectors obtained in the Arnoldi process. The coarse grid space can be improved adaptively as the Ritz vectors become a better approximation of the eigenvectors. Numerical tests on the model problem demonstrate the efficiency.

[1]  K. Burrage,et al.  On the Performance of Various Adaptive Preconditioned GMRES Strategies , 1998 .

[2]  Thomas A. Manteuffel,et al.  Adaptive Smoothed Aggregation (AlphaSA) Multigrid , 2005, SIAM Rev..

[3]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[4]  Olof B. Widlund,et al.  Towards a Unified Theory of Domain Decomposition Algorithms for Elliptic Problems , 2015 .

[5]  Cornelis Vuik,et al.  Comparison of Two-Level Preconditioners Derived from Deflation, Domain Decomposition and Multigrid Methods , 2009, J. Sci. Comput..

[6]  Christian Rey,et al.  A Rayleigh–Ritz preconditioner for the iterative solution to large scale nonlinear problems , 1998, Numerical Algorithms.

[7]  Irad Yavneh,et al.  Coarse-Grid Correction for Nonelliptic and Singular Perturbation Problems , 1998, SIAM J. Sci. Comput..

[8]  Gene H. Golub,et al.  Adaptively Preconditioned GMRES Algorithms , 1998, SIAM J. Sci. Comput..

[9]  Ronald B. Morgan,et al.  Implicitly Restarted GMRES and Arnoldi Methods for Nonsymmetric Systems of Equations , 2000, SIAM J. Matrix Anal. Appl..

[10]  Bruno Carpentieri,et al.  Additive and Multiplicative Two-Level Spectral Preconditioning for General Linear Systems , 2007, SIAM J. Sci. Comput..

[11]  Frédéric Guyomarc'h,et al.  A Deflated Version of the Conjugate Gradient Algorithm , 1999, SIAM J. Sci. Comput..

[12]  Bruno Carpentieri,et al.  A Class of Spectral Two-Level Preconditioners , 2003, SIAM J. Sci. Comput..

[13]  J. Mandel Balancing domain decomposition , 1993 .

[14]  K. Burrage,et al.  Restarted GMRES preconditioned by deflation , 1996 .

[15]  Hua Xiang,et al.  A Coarse Space Construction Based on Local Dirichlet-to-Neumann Maps , 2011, SIAM J. Sci. Comput..

[16]  Reinhard Nabben,et al.  Multilevel Projection-Based Nested Krylov Iteration for Boundary Value Problems , 2008, SIAM J. Sci. Comput..

[17]  Gene H. Golub,et al.  Matrix computations , 1983 .

[18]  R. Morgan Computing Interior Eigenvalues of Large Matrices , 1991 .

[19]  Oliver G. Ernst,et al.  Analysis of acceleration strategies for restarted minimal residual methods , 2000 .

[20]  Piet Hemker,et al.  On the order of prolongations and restrictions in multigrid procedures , 1990 .

[21]  Eric de Sturler,et al.  Recycling Krylov Subspaces for Sequences of Linear Systems , 2006, SIAM J. Sci. Comput..

[22]  S. Gratton,et al.  Incremental spectral preconditioners for sequences of linear systems , 2007 .

[23]  Reinhard Nabben,et al.  Deflation and Balancing Preconditioners for Krylov Subspace Methods Applied to Nonsymmetric Matrices , 2008, SIAM J. Matrix Anal. Appl..

[24]  R. Nicolaides Deflation of conjugate gradients with applications to boundary value problems , 1987 .

[25]  Misha Elena Kilmer,et al.  Recycling Subspace Information for Diffuse Optical Tomography , 2005, SIAM J. Sci. Comput..

[26]  Ronald B. Morgan,et al.  A Restarted GMRES Method Augmented with Eigenvectors , 1995, SIAM J. Matrix Anal. Appl..

[27]  J. Pasciak,et al.  The Construction of Preconditioners for Elliptic Problems by Substructuring. , 2010 .

[28]  J. Meijerink,et al.  An Efficient Preconditioned CG Method for the Solution of a Class of Layered Problems with Extreme Contrasts in the Coefficients , 1999 .

[29]  Y. Saad,et al.  Deflated and Augmented Krylov Subspace Techniques , 1997 .

[30]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.