A general model for the impedance of batteries and supercapacitors: The non-linear distribution of diffusion times

Abstract Electrochemical impedance spectroscopy (EIS) is a technique widely used to characterize electrochemical systems. While EIS is powerful and simple to use, interpreting EIS experiments is not a straightforward task. Equivalent circuits are by far the most commonly used EIS models. However, these circuits models are not unique. To overcome this issue, the research community has shown increasing interest in distributional methods such as the distribution of relaxation times (DRT), and the recently developed distribution of diffusion times (DDT). The DDT method captures the diffusional timescales of electrode particles, and for this reason, is particularly well suited for the study of the EIS response of batteries and supercapacitors. One major assumption of the DDT method is that the electrodes of these devices are thin. This article generalizes the DDT to electrodes of finite thickness, and this analytical model is termed the non-linear distribution of diffusion times (NL-DDT). The NL-DDT is studied using synthetic data and applying it to actual experiments. The study shows that the NL-DDT can recover the diffusional characteristics as well as the physical properties of the electrodes, including the chemical diffusion coefficient and ionic conductivities.

[1]  Wei Lai,et al.  Electrochemical Impedance Spectroscopy of Phase Transition Materials , 2012 .

[2]  Alexandra Weiß,et al.  Distribution of Relaxation Times Analysis of High-Temperature PEM Fuel Cell Impedance Spectra , 2017 .

[3]  Wei Lai,et al.  Electrochemical impedance spectroscopy of mixed conductors under a chemical potential gradient: a case study of Pt|SDC|BSCF. , 2008, Physical chemistry chemical physics : PCCP.

[4]  Zhen He,et al.  Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies , 2009 .

[5]  S. Sikdar,et al.  Fundamentals and applications , 1998 .

[6]  Seung M. Oh,et al.  Impedance analysis of porous carbon electrodes to predict rate capability of electric double-layer capacitors , 2014 .

[7]  M. Bazant,et al.  Electrochemical Impedance Imaging via the Distribution of Diffusion Times. , 2017, Physical review letters.

[8]  Walter Gautschi,et al.  On the computation of modified Bessel function ratios , 1978 .

[9]  J. Weiner,et al.  Fundamentals and applications , 2003 .

[10]  Yoed Tsur,et al.  Analyzing results of impedance spectroscopy using novel evolutionary programming techniques , 2010 .

[11]  Marca M. Doeff,et al.  Electrochemical and Physical Properties of Ti-Substituted Layered Nickel Manganese Cobalt Oxide (NMC) Cathode Materials , 2012 .

[12]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[13]  D. Aurbach,et al.  Impedance of a Single Intercalation Particle and of Non-Homogeneous, Multilayered Porous Composite Electrodes for Li-ion Batteries , 2004 .

[14]  D. Jeon,et al.  Thermal modeling of cylindrical lithium ion battery during discharge cycle , 2011 .

[15]  J. Cabana,et al.  Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries , 2018 .

[16]  A. Abouimrane,et al.  Investigation of Li salt doped succinonitrile as potential solid electrolytes for lithium batteries , 2007 .

[17]  David A. Vermaas,et al.  Electrochemical Impedance Spectroscopy as a Performance Indicator of Water Dissociation in Bipolar Membranes , 2019, Journal of Materials Chemistry A.

[18]  L. Benea,et al.  Electrochemical impedance spectroscopy and corrosion behaviour of Al2O3–Ni nano composite coatings , 2008 .

[19]  F. Ciucci,et al.  Modeling the impedance spectra of mixed conducting thin films with exposed and embedded current collectors. , 2017, Physical chemistry chemical physics : PCCP.

[20]  Ralph E. White,et al.  Analytical Expression for the Impedance Response of an Insertion Electrode Cell , 2007 .

[21]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[22]  Ting Hei Wan,et al.  Influence of the Discretization Methods on the Distribution of Relaxation Times Deconvolution: Implementing Radial Basis Functions with DRTtools , 2015 .

[23]  K. Friedrich,et al.  Measuring and modeling mass transport losses in proton exchange membrane water electrolyzers using electrochemical impedance spectroscopy , 2019, Journal of Power Sources.

[24]  Francesco Ciucci,et al.  Modeling electrochemical impedance spectroscopy , 2019, Current Opinion in Electrochemistry.

[25]  Mohammed B. Effat,et al.  Bayesian and Hierarchical Bayesian Based Regularization for Deconvolving the Distribution of Relaxation Times from Electrochemical Impedance Spectroscopy Data , 2017 .

[26]  Hao Li,et al.  Optimized Temperature Effect of Li‐Ion Diffusion with Layer Distance in Li(NixMnyCoz)O2 Cathode Materials for High Performance Li‐Ion Battery , 2016 .

[27]  M. Doyle,et al.  The Impedance Response of a Porous Electrode Composed of Intercalation Particles , 2000 .

[28]  J. Schmidt,et al.  Studies on LiFePO4 as cathode material using impedance spectroscopy , 2011 .

[29]  Atsushi Nishikata,et al.  An application of electrochemical impedance spectroscopy to atmospheric corrosion study , 1995 .

[30]  Y. Chiang,et al.  Characterization of Electronic and Ionic Transport in Li1-xNi0.33Mn0.33Co0.33O2 (NMC333) and Li1-xNi0.50Mn0.20Co0.30O2 (NMC523) as a Function of Li Content , 2016 .

[31]  Yoyo Hinuma,et al.  Lithium Diffusion in Graphitic Carbon , 2010, 1108.0576.

[32]  E. Maire,et al.  Multiscale morphological characterization of process induced heterogeneities in blended positive electrodes for lithium–ion batteries , 2017, Journal of Materials Science.

[33]  Francesco Ciucci,et al.  Modeling the impedance response of mixed-conducting thin film electrodes. , 2014, Physical chemistry chemical physics : PCCP.

[34]  Ting Hei Wan,et al.  Optimal Regularization in Distribution of Relaxation Times applied to Electrochemical Impedance Spectroscopy: Ridge and Lasso Regression Methods - A Theoretical and Experimental Study , 2014 .

[35]  A. Benayad,et al.  Electrochemical Impedance Spectroscopy and X-ray Photoelectron Spectroscopy Study of Lithium Metal Surface Aging in Imidazolium-Based Ionic Liquid Electrolytes Performed at Open-Circuit Voltage. , 2019, ACS applied materials & interfaces.

[36]  R. Dominko,et al.  Impedance response of porous carbon cathodes in polysulfide redox system , 2019, Electrochimica Acta.

[37]  Francesco Ciucci,et al.  Analysis of Electrochemical Impedance Spectroscopy Data Using the Distribution of Relaxation Times: A Bayesian and Hierarchical Bayesian Approach , 2015 .

[38]  D. Ebling,et al.  Analysis of Admittance Data , 1999 .

[39]  Wei Lai,et al.  Small-Signal Apparent Diffusion Impedance of Intercalation Battery Electrodes , 2011 .

[40]  K. Zhao,et al.  Computational analysis of chemomechanical behaviors of composite electrodes in Li-ion batteries , 2016 .

[41]  J. Randles Kinetics of rapid electrode reactions , 1947 .

[42]  Juan Bisquert,et al.  Influence of the boundaries in the impedance of porous film electrodes , 2000 .

[43]  E. Tuncer,et al.  On dielectric data analysis. Using the Monte Carlo method to obtain relaxation time distribution and comparing non-linear spectral function fits , 2001 .

[44]  U. Troeltzsch,et al.  Characterizing aging effects of lithium ion batteries by impedance spectroscopy , 2006 .

[45]  J. Vetter,et al.  Impedance spectroscopy on porous materials : A general model and application to graphite electrodes of lithium-ion batteries , 2008 .

[46]  Joachim Maier,et al.  Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications , 2001 .

[47]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[48]  A. Tikhonov,et al.  Nonlinear Ill-Posed Problems , 1997 .

[49]  Yoed Tsur,et al.  Electrochemical impedance spectroscopy of supercapacitors: A novel analysis approach using evolutionary programming , 2014 .

[50]  T. Springer,et al.  Characterization of polymer electrolyte fuel cells using ac impedance spectroscopy , 1996 .

[51]  Jianbo Zhang,et al.  Theory of Impedance Response of Porous Electrodes: Simplifications, Inhomogeneities, Non-Stationarities and Applications , 2016 .

[52]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[53]  Nigel P. Brandon,et al.  Validation of a physically-based solid oxide fuel cell anode model combining 3D tomography and impedance spectroscopy , 2016 .

[54]  Wei Lai,et al.  Reducing error and measurement time in impedance spectroscopy using model based optimal experimental design , 2011 .

[55]  Fikile R. Brushett,et al.  Evaluation of Electrospun Fibrous Mats Targeted for Use as Flow Battery Electrodes , 2017 .

[56]  M. Z. Bazant,et al.  Effects of Nanoparticle Geometry and Size Distribution on Diffusion Impedance of Battery Electrodes , 2012, 1205.6539.

[57]  W. Bessler Rapid Impedance Modeling via Potential Step and Current Relaxation Simulations , 2007 .

[58]  D. Finegan,et al.  Simulated impedance of diffusion in porous media , 2017 .

[59]  H. Schichlein,et al.  Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells , 2002 .

[60]  Yoed Tsur,et al.  Harnessing evolutionary programming for impedance spectroscopy analysis: A case study of mixed ionic-electronic conductors , 2011 .

[61]  D. Brandell,et al.  Boosting Rechargeable Batteries R&D by Multiscale Modeling: Myth or Reality? , 2019, Chemical reviews.

[62]  Ellen Ivers-Tiffée,et al.  The distribution of relaxation times as basis for generalized time-domain models for Li-ion batteries , 2013 .

[63]  Impedance of porous electrodes , 1995 .

[64]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[65]  Ralph E. White,et al.  Estimation of Diffusion Coefficient of Lithium in Carbon Using AC Impedance Technique , 2002 .

[66]  Josef Granwehr,et al.  Two-dimensional impedance data analysis by the distribution of relaxation times , 2017 .

[67]  Q. Meyer,et al.  Electrochemical impedance spectroscopy of catalyst and carbon degradations in proton exchange membrane fuel cells , 2019, Journal of Power Sources.

[68]  Göran Lindbergh,et al.  Electrochemical Characterization and Temperature Dependency of Mass-Transport Properties of LiPF6 in EC:DEC , 2015 .

[69]  D. Harrington,et al.  Dynamic electrochemical impedance study of methanol oxidation at Pt at elevated temperatures , 2019, Electrochimica Acta.

[70]  Heena K Mutha,et al.  Porosimetry and packing morphology of vertically-aligned carbon nanotube arrays via impedance spectroscopy. , 2016, Nanotechnology.

[71]  A. Lasia Electrochemical Impedance Spectroscopy and its Applications , 2014 .

[72]  Zhengqiang Pan,et al.  An easy-to-implement multi-point impedance technique for monitoring aging of lithium ion batteries , 2019, Journal of Power Sources.

[73]  Yoed Tsur,et al.  ISGP: Impedance Spectroscopy Analysis Using Evolutionary Programming Procedure , 2011 .

[74]  Francesco Ciucci,et al.  Revisiting parameter identification in electrochemical impedance spectroscopy: Weighted least squares and optimal experimental design , 2013 .

[75]  N. Omar,et al.  Electrical double-layer capacitors: evaluation of ageing phenomena during cycle life testing , 2014, Journal of Applied Electrochemistry.

[76]  D. Maier,et al.  An improved analysis of admittance data for high resistivity materials by a nonlinear regularization method , 1997 .

[77]  Rosemary A. Renaut,et al.  Stability and error analysis of the polarization estimation inverse problem for microbial fuel cells , 2013 .

[78]  Daikichi Mukoyama,et al.  Review-Development of Diagnostic Process for Commercially Available Batteries, Especially Lithium Ion Battery, by Electrochemical Impedance Spectroscopy , 2015 .

[79]  Yi Cui,et al.  Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes , 2009 .

[80]  J. Ross Macdonald,et al.  Comparison of methods for estimating continuous distributions of relaxation times , 2005 .

[81]  Francesco Ciucci,et al.  Surface reaction and transport in mixed conductors with electrochemically-active surfaces: a 2-D numerical study of ceria. , 2011, Physical chemistry chemical physics : PCCP.

[82]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[83]  J. Jamnik Impedance spectroscopy of mixed conductors with semi-blocking boundaries , 2003 .

[84]  Joachim Maier,et al.  A powerful electrical network model for the impedance of mixed conductors , 1999 .

[85]  Daniel Hissel,et al.  A review of DC/DC converter-based electrochemical impedance spectroscopy for fuel cell electric vehicles , 2019, Renewable Energy.

[86]  W. Schnurnberger,et al.  Electrochemical impedance spectra of solid-oxide fuel cells and polymer membrane fuel cells , 1998 .

[87]  Xin Li,et al.  Deconvolving distribution of relaxation times, resistances and inductance from electrochemical impedance spectroscopy via statistical model selection: Exploiting structural-sparsity regularization and data-driven parameter tuning , 2019, Electrochimica Acta.

[88]  Tsuyoshi Sasaki,et al.  Impedance Spectroscopy Characterization of Porous Electrodes under Different Electrode Thickness Using a Symmetric Cell for High-Performance Lithium-Ion Batteries , 2015 .