Geodesic Regression and the Theory of Least Squares on Riemannian Manifolds
暂无分享,去创建一个
[1] A. Munk,et al. Intrinsic shape analysis: Geodesic principal component analysis for Riemannian manifolds modulo Lie group actions. Discussion paper with rejoinder. , 2010 .
[2] D. Mumford,et al. Riemannian Geometries on Spaces of Plane Curves , 2003, math/0312384.
[3] P. Thomas Fletcher,et al. Statistics of shape via principal geodesic analysis on Lie groups , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..
[4] S. Helgason. Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .
[5] I. Holopainen. Riemannian Geometry , 1927, Nature.
[6] U. Grenander. Probabilities on Algebraic Structures , 1964 .
[7] Martin Styner,et al. Intrinsic Regression Models for Manifold-Valued Data. , 2009, Journal of the American Statistical Association.
[8] M. Fréchet. Les éléments aléatoires de nature quelconque dans un espace distancié , 1948 .
[9] Naftali Raz,et al. The influence of sex, age, and handedness on corpus callosum morphology: A meta-analysis , 1995, Psychobiology.
[10] François-Xavier Vialard,et al. Geodesic Regression for Image Time-Series , 2011, MICCAI.
[11] W. Boothby. An introduction to differentiable manifolds and Riemannian geometry , 1975 .
[12] F. Bookstein. Size and Shape Spaces for Landmark Data in Two Dimensions , 1986 .
[13] H. Karcher. Riemannian center of mass and mollifier smoothing , 1977 .
[14] Xavier Pennec,et al. Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements , 2006, Journal of Mathematical Imaging and Vision.
[15] I. Dryden,et al. Shape curves and geodesic modelling , 2010 .
[16] P. Fletcher. Geodesic Regression on Riemannian Manifolds , 2011 .
[17] W. Kendall. Probability, Convexity, and Harmonic Maps with Small Image I: Uniqueness and Fine Existence , 1990 .
[18] P. Thomas Fletcher,et al. Sasaki metrics for analysis of longitudinal data on manifolds , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.
[19] P. Thomas Fletcher,et al. Population Shape Regression from Random Design Data , 2007, 2007 IEEE 11th International Conference on Computer Vision.
[20] M. Miller. Computational anatomy: shape, growth, and atrophy comparison via diffeomorphisms , 2004, NeuroImage.
[21] Alain Trouvé,et al. A Second-Order Model for Time-Dependent Data Interpolation: Splines on Shape Spaces , 2010 .
[22] Laurent Younes,et al. Computable Elastic Distances Between Shapes , 1998, SIAM J. Appl. Math..
[23] L. Younes. Jacobi fields in groups of diffeomorphisms and applications , 2007 .
[24] K. Mardia,et al. Statistical Shape Analysis , 1998 .
[25] K. Mardia. Directional statistics in geosciences , 1981 .
[26] P. Thomas Fletcher,et al. Polynomial Regression on Riemannian Manifolds , 2012, ECCV.
[27] I. Dryden,et al. Shape-space smoothing splines for planar landmark data , 2007 .
[28] Guido Gerig,et al. Spatiotemporal Atlas Estimation for Developmental Delay Detection in Longitudinal Datasets , 2009, MICCAI.
[29] P. Jupp,et al. Fitting Smooth Paths to Spherical Data , 1987 .
[30] Anuj Srivastava,et al. Analysis of planar shapes using geodesic paths on shape spaces , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[31] D. Kendall. SHAPE MANIFOLDS, PROCRUSTEAN METRICS, AND COMPLEX PROJECTIVE SPACES , 1984 .