High voltage, high current GaN-on-GaN p-n diodes with partially compensated edge termination

An approach to realizing high-voltage, high-current vertical GaN-on-GaN power diodes is reported. We show that by combining a partially compensated ion-implanted edge termination (ET) with sputtered SiNx passivation and optimized ohmic contacts, devices approaching the fundamental material limits of GaN can be achieved. Devices with breakdown voltages (Vbr) of 1.68 kV and differential specific on resistances (Ron) of 0.15 mΩ cm2, corresponding to a Baliga figure of merit of 18.8 GW/cm2, are demonstrated experimentally. The ion-implantation-based ET has been analyzed through numerical simulation and validated by experiment. The use of a partially compensated ET layer, with approximately 40 nm of the p-type anode layer remaining uncompensated by the implant, is found to be optimal for maximizing Vbr. The implant-based ET enhances the breakdown voltage without compromising the forward characteristics. Devices exhibit near-ideal scaling with area, enabling currents as high as 12 A for a 1 mm diameter device.

[1]  M. Kiyama,et al.  High-breakdown-voltage pn-junction diodes on GaN substrates , 2007 .

[2]  Zhijian Lu,et al.  Effect of Buffer Layer Design on Vertical GaN-on-GaN p-n and Schottky Power Diodes , 2017, IEEE Electron Device Letters.

[3]  J. Ao,et al.  Improvement of device isolation using field implantation for GaN MOSFETs , 2016 .

[4]  B. J. Baliga,et al.  Planar Nearly Ideal Edge-Termination Technique for GaN Devices , 2011, IEEE Electron Device Letters.

[5]  Patrick Fay,et al.  Thin-film GaN Schottky diodes formed by epitaxial lift-off , 2017 .

[6]  J. Glaser,et al.  GaN Transistors for Efficient Power Conversion , 2019 .

[7]  N. Newman,et al.  p‐type gallium nitride by reactive ion‐beam molecular beam epitaxy with ion implantation, diffusion, or coevaporation of Mg , 1994 .

[8]  Daniel Piedra,et al.  Origin and Control of OFF-State Leakage Current in GaN-on-Si Vertical Diodes , 2015, IEEE Transactions on Electron Devices.

[9]  Isik C. Kizilyalli,et al.  Vertical GaN Power Diodes With a Bilayer Edge Termination , 2016, IEEE Transactions on Electron Devices.

[10]  Russell D. Dupuis,et al.  High-voltage GaN pin vertical rectifiers with 2 /spl mu/m thick i-layer , 2000 .

[11]  Fu-Rong Chen,et al.  Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films , 1999 .

[12]  Huili Grace Xing,et al.  1.7-kV and 0.55- $\text{m}\Omega \cdot \text {cm}^{2}$ GaN p-n Diodes on Bulk GaN Substrates With Avalanche Capability , 2016, IEEE Electron Device Letters.

[13]  Philippe Godignon,et al.  A Survey of Wide Bandgap Power Semiconductor Devices , 2014, IEEE Transactions on Power Electronics.

[14]  F. Ren,et al.  Design of edge termination for GaN power Schottky diodes , 2005 .

[15]  H. Zirath,et al.  Oxygen Ion Implantation Isolation Planar Process for AlGaN/GaN HEMTs , 2007, IEEE Electron Device Letters.

[16]  Takehiro Yoshida,et al.  Vertical GaN p-n Junction Diodes With High Breakdown Voltages Over 4 kV , 2015, IEEE Electron Device Letters.

[17]  James S. Speck,et al.  Analysis of reverse-bias leakage current mechanisms in GaN grown by molecular-beam epitaxy , 2004 .

[18]  J. Kim,et al.  Electrical characteristics of p-GaN Schottky rectifiers after PECVD SiNx passivation , 2002 .

[19]  Huili Grace Xing,et al.  Near unity ideality factor and Shockley-Read-Hall lifetime in GaN-on-GaN p-n diodes with avalanche breakdown , 2015 .

[20]  Don Disney,et al.  3.7 kV Vertical GaN PN Diodes , 2014, IEEE Electron Device Letters.

[21]  Don Disney,et al.  High Voltage Vertical GaN p-n Diodes With Avalanche Capability , 2013, IEEE Transactions on Electron Devices.

[22]  Jonathan J. Wierer,et al.  High voltage and high current density vertical GaN power diodes , 2016 .

[23]  R. Dupuis,et al.  High performance GaN pin rectifiers grown on free-standing GaN substrates , 2006 .

[24]  I. C. Kizilyalli,et al.  4-kV and 2.8- $\text{m}\Omega $ -cm2 Vertical GaN p-n Diodes With Low Leakage Currents , 2015, IEEE Electron Device Letters.