Dust-acoustic shock waves in a strongly coupled dusty plasma with two-temperature nonthermal ions and transverse perturbations

In this paper, the nonlinear propagation of the dust-acoustic waves in a strongly coupled dusty plasma with two-temperature nonthermal ions and transverse perturbations is governed by a cylindrical Kadomtsev–Petviashvili–Burgers (KP–Burgers) equation. With the help of the variable-coefficient generalized projected Ricatti equation expansion method, the cylindrical KP–Burgers equation is solved and a shock wave solution is obtained. The effects on the amplitude of the shock wave caused by some important parameters such as ion nonthermal parameter a and temperature parameters β1, β, etc are shown. The effects caused by dissipation and transverse perturbations are also discussed. It also indicates that the dust density hole can form and enlarge as time goes on.

[1]  Bo Tian,et al.  Spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation , 2005 .

[2]  N. N. Rao,et al.  DUST -ACOUSTIC WAVES IN DUSTY PLASMAS , 1990 .

[3]  M. Murillo Static local field correction description of acoustic waves in strongly coupling dusty plasmas , 1998 .

[4]  R. Merlino,et al.  Laboratory observation of the dust-acoustic wave mode , 1995 .

[5]  R. Merlino,et al.  Video imaging of dust acoustic waves , 1999 .

[6]  Hiroshi Iyetomi,et al.  Statistical physics of dense plasmas: Thermodynamics, transport coefficients and dynamic correlations , 1987 .

[7]  Xue Ju-kui,et al.  Modulational instability of cylindrical and spherical dust ion-acoustic waves , 2003 .

[8]  Michelle F. Thomsen,et al.  Electron velocity distributions near the Earth's bow shock , 1983 .

[9]  J. Xue A spherical KP equation for dust acoustic waves , 2003 .

[10]  F. Melandsø Lattice waves in dust plasma crystals , 1996 .

[11]  N. S. Saini,et al.  The Kadomstev–Petviashvili equation in dusty plasma with variable dust charge and two temperature ions , 2006 .

[12]  B. Hultqvist,et al.  First measurements of the ionospheric plasma escape from Mars , 1989, Nature.

[13]  Abdullah Al Mamun,et al.  Solitons, shocks and vortices in dusty plasmas , 2003 .

[14]  P. Kintner,et al.  POLAR observations of coherent electric field structures , 1998 .

[15]  Abdullah Al Mamun,et al.  Dust-acoustic solitary and shock waves in a strongly coupled liquid state dusty plasma with a vortex-like ion distribution , 2004 .

[16]  Samiran Ghosh,et al.  Charging-delay effect on longitudinal dust acoustic shock wave in strongly coupled dusty plasma , 2005 .

[17]  G. Doolen,et al.  Improved equation of state for the classical one-component plasma , 1980 .

[18]  Gabor J. Kalman,et al.  Dust acoustic waves in strongly coupled dusty plasmas , 1997 .

[19]  M. Murillo Longitudinal collective modes of strongly coupled dusty plasmas at finite frequencies and wavevectors , 2000 .

[20]  Abdullah Al Mamun,et al.  Dust-acoustic shocks in a strongly coupled dusty plasma , 2001 .

[21]  P. Kaw 23pD-1 Collective Low Frequency Modes in Strongly Coupled Dusty Plasmas , 1998 .

[22]  N. N. Rao,et al.  Nonlinear dust-acoustic waves with dust charge fluctuations , 1994 .

[23]  Yoshifumi Futaana,et al.  Moon‐related nonthermal ions observed by Nozomi: Species, sources, and generation mechanisms , 2003 .

[24]  A. Bhattacharjee,et al.  Longitudinal and transverse waves in Yukawa crystals. , 2001, Physical review letters.

[25]  L. Stenflo,et al.  Transverse shear waves generating vortex-like dust fluid motions in strongly coupled dusty plasmas , 2003 .

[26]  P. Shukla,et al.  Theory of dust-acoustic shocks , 1995 .

[27]  A. Sen,et al.  Experimental observations of transverse shear waves in strongly coupled dusty plasmas. , 2002, Physical review letters.

[28]  Yue-Yue Wang,et al.  Variable-coefficient KP equation and solitonic solution for two-temperature ions in dusty plasma , 2006 .

[29]  Samiran Ghosh,et al.  Instability of dust acoustic wave due to nonthermal ions in a charge varying dusty plasma , 2004 .