pyCHARMM: Embedding CHARMM Functionality in a Python Framework.

CHARMM is rich in methodology and functionality as one of the first programs addressing problems of molecular dynamics and modeling of biological macromolecules and their partners, e.g., small molecule ligands. When combined with the highly developed CHARMM parameters for proteins, nucleic acids, small molecules, lipids, sugars, and other biologically relevant building blocks, and the versatile CHARMM scripting language, CHARMM has been a trendsetting platform for modeling studies of biological macromolecules. To further enhance the utility of accessing and using CHARMM functionality in increasingly complex workflows associated with modeling biological systems, we introduce pyCHARMM, Python bindings, functions, and modules to complement and extend the extensive set of modeling tools and methods already available in CHARMM. These include access to CHARMM function-generated variables associated with the system (psf), coordinates, velocities and forces, atom selection variables, and force field related parameters. The ability to augment CHARMM forces and energies with energy terms or methods derived from machine learning or other sources, written in Python, CUDA, or OpenCL and expressed as Python callable routines is introduced together with analogous functions callable during dynamics calculations. Integration of Python-based graphical engines for visualization of simulation models and results is also accessible. Loosely coupled parallelism is available for workflows such as free energy calculations, using MBAR/TI approaches or high-throughput multisite λ-dynamics (MSλD) free energy methods, string path optimization calculations, replica exchange, and molecular docking with a new Python-based CDOCKER module. CHARMM accelerated platform kernels through the CHARMM/OpenMM API, CHARMM/DOMDEC, and CHARMM/BLaDE API are also readily integrated into this Python framework. We anticipate that pyCHARMM will be a robust platform for the development of comprehensive and complex workflows utilizing Python and its extensive functionality as well as an optimal platform for users to learn molecular modeling methods and practices within a Python-friendly environment such as Jupyter Notebooks.

[1]  G. Ciccotti,et al.  The emergence of protein dynamics simulations: how computational statistical mechanics met biochemistry , 2022, The European Physical Journal H.

[2]  Jonah Z. Vilseck,et al.  Optimizing Multisite λ-Dynamics Throughput with Charge Renormalization , 2022, J. Chem. Inf. Model..

[3]  Alexander D. MacKerell,et al.  CHARMM‐GUI Drude prepper for molecular dynamics simulation using the classical Drude polarizable force field , 2021, J. Comput. Chem..

[4]  Nathan R. Kern,et al.  CHARMM-GUI Nanomaterial Modeler for Modeling and Simulation of Nanomaterial Systems. , 2021, Journal of chemical theory and computation.

[5]  Wonpil Im,et al.  CHARMM-GUI Ligand Designer for Template-Based Virtual Ligand Design in a Binding Site , 2021, J. Chem. Inf. Model..

[6]  C. Brooks,et al.  BLaDE: A Basic Lambda Dynamics Engine for GPU-Accelerated Molecular Dynamics Free Energy Calculations. , 2021, Journal of chemical theory and computation.

[7]  C. Brooks,et al.  Flexible CDOCKER: Hybrid Searching Algorithm and Scoring Function with Side Chain Conformational Entropy , 2021, J. Chem. Inf. Model..

[8]  W. Im,et al.  CHARMM-GUI Membrane Builder for Lipid Nanoparticles with Ionizable Cationic Lipids and PEGylated Lipids , 2021, J. Chem. Inf. Model..

[9]  Darrin M. York,et al.  CHARMM-GUI Free Energy Calculator for Practical Ligand Binding Free Energy Simulations with AMBER , 2021, J. Chem. Inf. Model..

[10]  Wonpil Im,et al.  CHARMM-GUI LBS Finder & Refiner for Ligand Binding Site Prediction and Refinement , 2021, J. Chem. Inf. Model..

[11]  M. Meuwly Machine Learning for Chemical Reactions. , 2021, Chemical reviews.

[12]  Nathan R. Kern,et al.  CHARMM-GUI Polymer Builder for Modeling and Simulation of Synthetic Polymers. , 2021, Journal of chemical theory and computation.

[13]  Ya Gao,et al.  CHARMM-GUI Supports Hydrogen Mass Repartitioning and Different Protonation States of Phosphates in Lipopolysaccharides , 2021, J. Chem. Inf. Model..

[14]  Nathan R Kern,et al.  CHARMM-GUI Free Energy Calculator for Absolute and Relative Ligand Solvation and Binding Free Energy Simulations. , 2020, Journal of chemical theory and computation.

[15]  Nathan R. Kern,et al.  CHARMM-GUI supports the Amber force fields. , 2020, The Journal of chemical physics.

[16]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[17]  Jonah Z. Vilseck,et al.  Accelerated CDOCKER with GPUs, parallel simulated annealing and fast Fourier transforms. , 2020, Journal of chemical theory and computation.

[18]  Justin S. Smith,et al.  TorchANI: A Free and Open Source PyTorch-Based Deep Learning Implementation of the ANI Neural Network Potentials , 2020, J. Chem. Inf. Model..

[19]  Benoît Roux,et al.  CHARMM‐GUI DEER facilitator for spin‐pair distance distribution calculations and preparation of restrained‐ensemble molecular dynamics simulations , 2020, J. Comput. Chem..

[20]  Sunhwan Jo,et al.  CHARMM-GUI Glycan Modeler for modeling and simulation of carbohydrates and glycoconjugates , 2019, Glycobiology.

[21]  Jonah Z. Vilseck,et al.  Fast Solver for Large Scale Multistate Bennett Acceptance Ratio Equations. , 2019, Journal of chemical theory and computation.

[22]  Jumin Lee,et al.  CHARMM‐GUI Nanodisc Builder for modeling and simulation of various nanodisc systems , 2019, J. Comput. Chem..

[23]  Sunhwan Jo,et al.  CHARMM-GUI Membrane Builder for Complex Biological Membrane Simulations with Glycolipids and Lipoglycans. , 2018, Journal of chemical theory and computation.

[24]  Alexander S. Rose,et al.  NGLview–interactive molecular graphics for Jupyter notebooks , 2018, Bioinform..

[25]  Jumin Lee,et al.  CHARMM‐GUI Martini Maker for modeling and simulation of complex bacterial membranes with lipopolysaccharides , 2017, J. Comput. Chem..

[26]  Charles L. Brooks,et al.  CHARMM‐GUI ligand reader and modeler for CHARMM force field generation of small molecules , 2017, J. Comput. Chem..

[27]  Alexander D. MacKerell,et al.  CHARMM‐GUI 10 years for biomolecular modeling and simulation , 2017, J. Comput. Chem..

[28]  Klaus Schulten,et al.  CHARMM-GUI MDFF/xMDFF Utilizer for Molecular Dynamics Flexible Fitting Simulations in Various Environments. , 2017, The journal of physical chemistry. B.

[29]  Jonah Z. Vilseck,et al.  Adaptive Landscape Flattening Accelerates Sampling of Alchemical Space in Multisite λ Dynamics. , 2017, The journal of physical chemistry. B.

[30]  Vijay S. Pande,et al.  OpenMM 7: Rapid development of high performance algorithms for molecular dynamics , 2016, bioRxiv.

[31]  M. Soloviov,et al.  Structural Interpretation of Metastable States in Myoglobin-NO. , 2016, Angewandte Chemie.

[32]  Alexander D. MacKerell,et al.  CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field , 2015, Journal of chemical theory and computation.

[33]  Wonpil Im,et al.  CHARMM-GUI HMMM Builder for Membrane Simulations with the Highly Mobile Membrane-Mimetic Model. , 2015, Biophysical journal.

[34]  Thomas J Lane,et al.  MDTraj: a modern, open library for the analysis of molecular dynamics trajectories , 2014, bioRxiv.

[35]  Helgi I Ingólfsson,et al.  CHARMM-GUI Martini Maker for Coarse-Grained Simulations with the Martini Force Field. , 2015, Journal of chemical theory and computation.

[36]  Sunhwan Jo,et al.  CHARMM‐GUI Membrane Builder toward realistic biological membrane simulations , 2014, J. Comput. Chem..

[37]  David L. Mobley,et al.  FreeSolv: a database of experimental and calculated hydration free energies, with input files , 2014, Journal of Computer-Aided Molecular Design.

[38]  Klaus Schulten,et al.  CHARMM-GUI PACE CG Builder for Solution, Micelle, and Bilayer Coarse-Grained Simulations , 2014, J. Chem. Inf. Model..

[39]  Alex Dickson,et al.  WExplore: hierarchical exploration of high-dimensional spaces using the weighted ensemble algorithm. , 2014, The journal of physical chemistry. B.

[40]  Michael F. Crowley,et al.  New faster CHARMM molecular dynamics engine , 2013, J. Comput. Chem..

[41]  L. Chong,et al.  Simultaneous Computation of Dynamical and Equilibrium Information Using a Weighted Ensemble of Trajectories , 2012, Journal of chemical theory and computation.

[42]  Cecilia Clementi,et al.  Rapid exploration of configuration space with diffusion-map-directed molecular dynamics. , 2013, The journal of physical chemistry. B.

[43]  Diwakar Shukla,et al.  OpenMM 4: A Reusable, Extensible, Hardware Independent Library for High Performance Molecular Simulation. , 2013, Journal of chemical theory and computation.

[44]  Alexander D. MacKerell,et al.  Automation of the CHARMM General Force Field (CGenFF) I: Bond Perception and Atom Typing , 2012, J. Chem. Inf. Model..

[45]  Alexander D. MacKerell,et al.  Automation of the CHARMM General Force Field (CGenFF) II: Assignment of Bonded Parameters and Partial Atomic Charges , 2012, J. Chem. Inf. Model..

[46]  Jennifer L. Knight,et al.  Multi-Site λ-dynamics for simulated Structure-Activity Relationship studies. , 2011, Journal of chemical theory and computation.

[47]  Oliver Beckstein,et al.  MDAnalysis: A toolkit for the analysis of molecular dynamics simulations , 2011, J. Comput. Chem..

[48]  Jan H. Jensen,et al.  PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. , 2011, Journal of chemical theory and computation.

[49]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[50]  Michael R. Shirts,et al.  Statistically optimal analysis of samples from multiple equilibrium states. , 2008, The Journal of chemical physics.

[51]  H. Mao,et al.  Identification of the βTP site in the x-ray structure of F1-ATPase as the high-affinity catalytic site , 2007, Proceedings of the National Academy of Sciences.

[52]  Gerhard Klebe,et al.  PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations , 2007, Nucleic Acids Res..

[53]  Karunesh Arora,et al.  Harmonic Fourier beads method for studying rare events on rugged energy surfaces. , 2006, The Journal of chemical physics.

[54]  G. Ciccotti,et al.  String method in collective variables: minimum free energy paths and isocommittor surfaces. , 2006, The Journal of chemical physics.

[55]  Richard A. Friesner,et al.  Integrated Modeling Program, Applied Chemical Theory (IMPACT) , 2005, J. Comput. Chem..

[56]  Markus Christen,et al.  The GROMOS software for biomolecular simulation: GROMOS05 , 2005, J. Comput. Chem..

[57]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[58]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[59]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[60]  B. Berne,et al.  Replica exchange with solute tempering: a method for sampling biological systems in explicit water. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Mario A. Storti,et al.  MPI for Python , 2005, J. Parallel Distributed Comput..

[62]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[63]  M. Karplus,et al.  Molecular dynamics and protein function. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[64]  W. E,et al.  Finite temperature string method for the study of rare events. , 2002, The journal of physical chemistry. B.

[65]  Nathan A. Baker,et al.  PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations , 2004, Nucleic Acids Res..

[66]  Michael Feig,et al.  MMTSB Tool Set: enhanced sampling and multiscale modeling methods for applications in structural biology. , 2004, Journal of molecular graphics & modelling.

[67]  Charles L. Brooks,et al.  Detailed analysis of grid‐based molecular docking: A case study of CDOCKER—A CHARMm‐based MD docking algorithm , 2003, J. Comput. Chem..

[68]  M Karplus,et al.  The missing link between thermodynamics and structure in F1-ATPase , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[69]  J. Berg,et al.  Molecular dynamics simulations of biomolecules , 2002, Nature Structural Biology.

[70]  M. Karplus,et al.  Molecular dynamics simulations of biomolecules. , 2002, Nature structural biology.

[71]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[72]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[73]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .