High-Performance Polycrystalline Silicon Thin Film Transistors on Non-Alkali Glass Produced Using Continuous Wave Laser Lateral Crystallization

We have developed high-performance polycrystalline silicon (poly-Si) thin film transistors (TFTs) with a field-effect mobility of 566 cm2/Vs for n-channel TFT and 200 cm2/Vs for p-channel TFT on 300 mm×300 mm non-alkali glass substrate. The TFTs were developed using a stable diode pumped solid state (DPSS) continuous-wave laser lateral crystallization (CLC) method at a temperature below 450°C. The high performance of the TFTs was attributed to the very large predominantly (100)-oriented grain. This crystallization method will enable high-performance Si-LSI circuits to be fabricated on large non-alkali glass substrates.