Assays for gene silencing in yeast.

[1]  K. Nasmyth,et al.  Role of DNA replication in the repression of silent mating type loci in yeast , 1984, Nature.

[2]  G. Natsoulis,et al.  5-Fluoroorotic acid as a selective agent in yeast molecular genetics. , 1987, Methods in enzymology.

[3]  D. Shah,et al.  Amino acid biosynthesis inhibitors as herbicides. , 1988, Annual review of biochemistry.

[4]  K. Runge,et al.  Introduction of extra telomeric DNA sequences into Saccharomyces cerevisiae results in telomere elongation , 1989, Molecular and cellular biology.

[5]  Rodney Rothstein,et al.  Elevated recombination rates in transcriptionally active DNA , 1989, Cell.

[6]  Jasper Rine,et al.  Epigenetic inheritance of transcriptional states in S. cerevisiae , 1989, Cell.

[7]  R. E. Esposito,et al.  A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA , 1989, Cell.

[8]  R. Sikorski,et al.  A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. , 1989, Genetics.

[9]  Barbara L. Billington,et al.  Position effect at S. cerevisiae telomeres: Reversible repression of Pol II transcription , 1990, Cell.

[10]  F. Sherman,et al.  Micromanipulation and dissection of asci. , 1991, Methods in enzymology.

[11]  G. Sprague,,et al.  Assay of yeast mating reaction. , 1991, Methods in enzymology.

[12]  Oscar M. Aparicio,et al.  Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae , 1991, Cell.

[13]  A. Klar,et al.  Active genes in budding yeast display enhanced in vivo accessibility to foreign DNA methylases: a novel in vivo probe for chromatin structure of yeast. , 1992, Genes & development.

[14]  J. Broach,et al.  Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. , 1993, Genes & development.

[15]  Sanjay K. Chhablani,et al.  Silent domains are assembled continuously from the telomere and are defined by promoter distance and strength, and by SIR3 dosage. , 1993, Genes & development.

[16]  D. Grueneberg,et al.  Studying Heterologous Transcription Factors in Yeast , 1993 .

[17]  O. Aparicio,et al.  Overcoming telomeric silencing: a trans-activator competes to establish gene expression in a cell cycle-dependent way. , 1994, Genes & development.

[18]  D. Gottschling,et al.  TLC1: template RNA component of Saccharomyces cerevisiae telomerase. , 1994, Science.

[19]  J. Broach,et al.  Yeast silencers can act as orientation-dependent gene inactivation centers that respond to environmental signals , 1995, Molecular and cellular biology.

[20]  J. Rine,et al.  Silencing and heritable domains of gene expression. , 1995, Annual review of cell and developmental biology.

[21]  D. Shore,et al.  Disturbance of normal cell cycle progression enhances the establishment of transcriptional silencing in Saccharomyces cerevisiae , 1995, Molecular and cellular biology.

[22]  S. Gasser,et al.  The carboxy termini of Sir4 and Rap1 affect Sir3 localization: evidence for a multicomponent complex required for yeast telomeric silencing , 1995, The Journal of cell biology.

[23]  J. Boeke,et al.  A useful colony colour phenotype associated with the yeast selectable/counter‐selectable marker MET15 , 1996, Yeast.

[24]  H. Scherthan,et al.  The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae , 1996, The Journal of cell biology.

[25]  E. Gilson,et al.  Cooperation at a distance between silencers and proto‐silencers at the yeast HML locus. , 1996, The EMBO journal.

[26]  J. Broach,et al.  Silencers are required for inheritance of the repressed state in yeast. , 1996, Genes & development.

[27]  E. Gilson,et al.  Evidence for silencing compartments within the yeast nucleus: a role for telomere proximity and Sir protein concentration in silencer-mediated repression. , 1996, Genes & development.

[28]  D. Voytas,et al.  The Saccharomyces retrotransposon Ty5 integrates preferentially into regions of silent chromatin at the telomeres and mating loci. , 1996, Genes & development.

[29]  C. Bruschi,et al.  The red/white colony color assay in the yeast Saccharomyces cerevisiae: epistatic growth advantage of white ade8-18, ade2 cells over red ade2 cells , 1996, Current Genetics.

[30]  A. Lustig,et al.  Tethered Sir3p nucleates silencing at telomeres and internal loci in Saccharomyces cerevisiae , 1996, Molecular and cellular biology.

[31]  A. Riggs,et al.  Epigenetic mechanisms of gene regulation , 1996 .

[32]  B M Turner,et al.  Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern , 1996, Molecular and cellular biology.

[33]  M. Grunstein,et al.  Spreading of transcriptional represser SIR3 from telomeric heterochromatin , 1996, Nature.

[34]  B. Kennedy,et al.  Localization of Sir2p: the nucleolus as a compartment for silent information regulators , 1997, The EMBO journal.

[35]  Mala Murthy,et al.  Redistribution of Silencing Proteins from Telomeres to the Nucleolus Is Associated with Extension of Life Span in S. cerevisiae , 1997, Cell.

[36]  K. Luo,et al.  SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. , 1997, Genes & development.

[37]  R. E. Esposito,et al.  Direct evidence for SIR2 modulation of chromatin structure in yeast rDNA , 1997, The EMBO journal.

[38]  J. M. Sherman,et al.  An uncertain silence. , 1997, Trends in genetics : TIG.

[39]  J. Boeke,et al.  An unusual form of transcriptional silencing in yeast ribosomal DNA. , 1997, Genes & development.

[40]  M. Grunstein Histone acetylation in chromatin structure and transcription , 1997, Nature.

[41]  J. Rine,et al.  The origin recognition complex, SIR1, and the S phase requirement for silencing. , 1997, Science.

[42]  R. Kobayashi,et al.  Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. , 1997, Genes & development.

[43]  L. Breeden,et al.  Alpha-factor synchronization of budding yeast. , 1997, Methods in enzymology.

[44]  J. Berman,et al.  Chromatin assembly factor I contributes to the maintenance, but not the re-establishment, of silencing at the yeast silent mating loci. , 1998, Genes & development.

[45]  A. Lustig,et al.  Mechanisms of silencing in Saccharomyces cerevisiae. , 1998, Current opinion in genetics & development.

[46]  R. Simpson,et al.  High-Resolution Structural Analysis of Chromatin at Specific Loci: Saccharomyces cerevisiae Silent Mating Type Locus HMLα , 1998, Molecular and Cellular Biology.

[47]  V. Zakian,et al.  Sir Proteins, Rif Proteins, and Cdc13p BindSaccharomyces Telomeres In Vivo , 1998, Molecular and Cellular Biology.

[48]  J. Boeke,et al.  Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR‐mediated gene disruption and other applications , 1998, Yeast.

[49]  M. Grunstein Yeast Heterochromatin: Regulation of Its Assembly and Inheritance by Histones , 1998, Cell.

[50]  J. Boeke,et al.  Distribution of a limited Sir2 protein pool regulates the strength of yeast rDNA silencing and is modulated by Sir4p. , 1998, Genetics.

[51]  D. Gottschling,et al.  Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae. , 1998, Genetics.

[52]  S. Gasser,et al.  The nucleolus: Nucleolar space for RENT , 1999, Current Biology.

[53]  P. Defossez,et al.  Effects of Mutations in DNA Repair Genes on Formation of Ribosomal DNA Circles and Life Span inSaccharomyces cerevisiae , 1999, Molecular and Cellular Biology.

[54]  J. Rine,et al.  HMR-I is an origin of replication and a silencer in Saccharomyces cerevisiae. , 1999, Genetics.

[55]  L. Guarente,et al.  Diverse and dynamic functions of the Sir silencing complex , 1999, Nature Genetics.

[56]  Jef D. Boeke,et al.  A Genetic Screen for Ribosomal DNA Silencing Defects Identifies Multiple DNA Replication and Chromatin-Modulating Factors , 1999, Molecular and Cellular Biology.

[57]  G. Fourel,et al.  Cohabitation of insulators and silencing elements in yeast subtelomeric regions , 1999, The EMBO journal.

[58]  R. Morse,et al.  Assays for nucleosome positioning in yeast. , 1999, Methods in enzymology.

[59]  P. Gregory,et al.  Mapping chromatin structure in yeast. , 1999, Methods in enzymology.

[60]  Sophie G. Martin,et al.  Relocalization of Telomeric Ku and SIR Proteins in Response to DNA Strand Breaks in Yeast , 1999, Cell.

[61]  M. Kladde,et al.  DNA methyltransferases as probes of chromatin structure in vivo. , 1999, Methods in enzymology.

[62]  L. Guarente,et al.  MEC1-Dependent Redistribution of the Sir3 Silencing Protein from Telomeres to DNA Double-Strand Breaks , 1999, Cell.

[63]  Ryuji Kobayashi,et al.  The RCAF complex mediates chromatin assembly during DNA replication and repair , 1999, Nature.

[64]  F. Pryde,et al.  Limitations of silencing at native yeast telomeres , 1999, The EMBO journal.

[65]  M. Grunstein,et al.  Mapping DNA interaction sites of chromosomal proteins using immunoprecipitation and polymerase chain reaction. , 1999, Methods in enzymology.

[66]  J. Broach,et al.  Immunological analysis of yeast chromatin. , 1999, Methods in enzymology.

[67]  S. Gasser,et al.  Nuclear compartments and gene regulation. , 1999, Current opinion in genetics & development.

[68]  M. Gotta,et al.  Analysis of nuclear organization in Saccharomyces cerevisiae. , 1999, Methods in enzymology.

[69]  J. Rine,et al.  A role for the replication proteins PCNA, RF-C, polymerase epsilon and Cdc45 in transcriptional silencing in Saccharomyces cerevisiae. , 1999, Genetics.

[70]  P. Defossez,et al.  Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. , 2000, Science.

[71]  L. Guarente,et al.  Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase , 2000, Nature.

[72]  D. Gottschling Gene silencing: Two faces of SIR2 , 2000, Current Biology.

[73]  M. Gartenberg The Sir proteins of Saccharomyces cerevisiae: mediators of transcriptional silencing and much more. , 2000, Current opinion in microbiology.

[74]  L. Guarente,et al.  Sir2 links chromatin silencing, metabolism, and aging. , 2000, Genes & development.

[75]  M. Gartenberg,et al.  Yeast heterochromatin is a dynamic structure that requires silencers continuously. , 2000, Genes & development.

[76]  Mark Ptashne,et al.  Telomere looping permits gene activation by a downstream UAS in yeast , 2001, Nature.

[77]  R. Losson,et al.  Constitutive mutants for orotidine 5 phosphate decarboxylase and dihydroorotic acid dehydrogenase in Saccharomyces cerevisiae , 1980, Current Genetics.