On the deformation of inversive distance circle packings, III

Abstract We show that the results in [8] are still true in hyperbolic background geometry setting, that is, the solution to Chow–Luo's combinatorial Ricci flow can always be extended to a solution that exists for all time, furthermore, the extended solution converges exponentially fast if and only if there exists a metric with zero curvature. We also give some results about the range of discrete Gaussian curvatures, which generalize Andreev–Thurston's theorem to some extent.

[1]  Kenneth Stephenson,et al.  Introduction to Circle Packing: The Theory of Discrete Analytic Functions , 2005 .

[2]  Huabin Ge,et al.  A Discrete Ricci Flow on Surfaces in Hyperbolic Background Geometry , 2015, 1505.05076.

[3]  Philip L. Bowers,et al.  Uniformizing Dessins and Belyi Maps Via Circle Packing , 2004 .

[4]  Richard Hughes,et al.  Geometry and Topology of 3-manifolds , 2011 .

[5]  U. Pinkall,et al.  Discrete conformal maps and ideal hyperbolic polyhedra , 2010, 1005.2698.

[6]  B. Hua,et al.  2-dimensional combinatorial Calabi flow in hyperbolic background geometry , 2013, 1301.6505.

[7]  Y. C. Verdière Un principe variationnel pour les empilements de cercles , 1991 .

[8]  Huabin Ge,et al.  $$\alpha $$α-curvatures and $$\alpha $$α-flows on low dimensional triangulated manifolds , 2015, 1505.05077.

[9]  Zheng-Xu He Rigidity of infinite disk patterns , 1999 .

[10]  Ren Guo,et al.  Rigidity of polyhedral surfaces, II , 2006, math/0612714.

[11]  F. Luo,et al.  Volume and rigidity of hyperbolic polyhedral 3‐manifolds , 2014, 1404.5365.

[12]  Monica K. Hurdal,et al.  Planar Conformal Mappings of Piecewise Flat Surfaces , 2002, VisMath.

[13]  Feng Luo Rigidity of polyhedral surfaces, II , 2014 .

[14]  David Glickenstein A combinatorial Yamabe flow in three dimensions , 2005 .

[15]  Igor Rivin Euclidean Structures on Simplicial Surfaces and Hyperbolic Volume , 1994 .

[16]  Wei Zeng,et al.  The unified discrete surface Ricci flow , 2014, Graph. Model..

[17]  Monica K. Hurdal,et al.  Discrete conformal methods for cortical brain flattening , 2009, NeuroImage.

[18]  Albert Marden,et al.  On Thurston's formulation and proof of Andreev's theorem , 1990 .

[19]  REN GUO LOCAL RIGIDITY OF INVERSIVE DISTANCE CIRCLE PACKING , 2010 .

[20]  D. Glickenstein Geometric triangulations and discrete Laplacians on manifolds , 2005, math/0508188.

[21]  E. M. Andreev ON CONVEX POLYHEDRA OF FINITE VOLUME IN LOBAČEVSKIĬ SPACE , 1970 .

[22]  E. M. Andreev ON CONVEX POLYHEDRA IN LOBAČEVSKIĬ SPACES , 1970 .

[23]  David Glickenstein A maximum principle for combinatorial Yamabe flow , 2002 .

[24]  Huabin Ge,et al.  $α$-curvatures and $α$-flows on low dimensional triangulated manifolds , 2015 .

[25]  B. Chow,et al.  COMBINATORIAL RICCI FLOWS ON SURFACES , 2002, math/0211256.

[26]  Huabin Ge,et al.  A combinatorial Yamabe problem on two and three dimensional manifolds , 2015, Calculus of Variations and Partial Differential Equations.