Coordinated System for Real Time Muscle Deformation during Locomotion

This paper presents a system that simulates, in real time, the volumetric deformation of muscles during human locomotion. We propose a two-layered motion model. The requirements of realism and real time computation lead to a hybrid lo- comotion system that uses a skeleton as first layer. The muscles, represented by an anatomical surface model, constitute the second layer, whose deformations are simu- lated with a finite element method (FEM). The FEM subsystem is fed by the torques and forces got from the locomotion system, through a line of action model, and takes into account the geometry and material properties of the muscles. High level param- eters (like height, weight, physical constitution, step frequency, step length or speed) allow to customize the individuals and the locomotion and therefore, the deformation of the persons' muscles.

[1]  幸村 琢 Creating and Retargetting Motion by the Musculoskeletal Human Body Model , 2000 .

[2]  Jack Dongarra,et al.  MPI: The Complete Reference , 1996 .

[3]  Y. Zheng,et al.  Effective elastic properties for lower limb soft tissues from manual indentation experiment. , 1999, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[4]  Ronald Fedkiw,et al.  Creating and simulating skeletal muscle from the visible human data set , 2005, IEEE Transactions on Visualization and Computer Graphics.

[5]  Gordon Clapworthy,et al.  An Anatomy-Based Approach to Human Muscle Modeling and Deformation , 2002, IEEE Trans. Vis. Comput. Graph..

[6]  Steven A. Kautz,et al.  Authors' response to ''comments on 'biomechanics and muscle coordination of human walking: parts I and II''' , 2004 .

[7]  Jane Wilhelms,et al.  Animals with Anatomy , 1997, IEEE Computer Graphics and Applications.

[8]  Adrian Hilton,et al.  A survey of advances in vision-based human motion capture and analysis , 2006, Comput. Vis. Image Underst..

[9]  Victor Ng-Thow-Hing,et al.  Application-Specific Muscle Representations , 2002, Graphics Interface.

[10]  David A. Winter Mechanical Power in Human Movement: Generation, Absorption and Transfer , 1987 .

[11]  Yizhou Yu,et al.  Real-time data driven deformation with affine bones , 2010 .

[12]  Christoph W. Ueberhuber Numerical computation : methods, software, and analysis , 1997 .

[13]  Brian Wyvill,et al.  Realistic skeletal muscle deformation using finite element analysis , 2001, Proceedings XIV Brazilian Symposium on Computer Graphics and Image Processing.

[14]  Markus Böl,et al.  Micromechanical modelling of skeletal muscles based on the finite element method , 2008, Computer Methods in Biomechanics and Biomedical Engineering.

[15]  Shinya Miyazaki,et al.  Muscle-Driven Motion Simulation Based on Deformable Human Model Constructed from Real Anatomical Slice Data , 2002, AMDO.

[16]  Paul Allard,et al.  Three-dimensional analysis of human movement , 1995 .

[17]  Daniel Thalmann,et al.  A global human walking model with real-time kinematic personification , 1990, The Visual Computer.

[18]  Jane Wilhelms,et al.  Anatomically based modeling , 1997, SIGGRAPH.

[19]  Francisco J. Serón,et al.  Software Laboratory for Physical Based Human Body Animation , 2002, AMDO.

[20]  Gordon Clapworthy,et al.  Biomechanics Modeling of the Musculoskeletal Apparatus: Status and Key Issues , 2006, Proceedings of the IEEE.

[21]  Sudeep Sarkar,et al.  The humanID gait challenge problem: data sets, performance, and analysis , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Sandra Baldassarri Simulación eficiente de fenómenos físicos en medios continuos: su aplicación a la locomoción humana. , 2004 .

[23]  D. Winter Biomechanics of Human Movement , 1980 .

[24]  Ronald Fedkiw,et al.  Finite volume methods for the simulation of skeletal muscle , 2003, SCA '03.

[25]  Daniel Thalmann,et al.  Real time muscle deformations using mass-spring systems , 1998, Proceedings. Computer Graphics International (Cat. No.98EX149).

[26]  Jane Wilhelms MODELING ANIMALS WITH BONES, MUSCLES, AND SKIN , 1995 .

[27]  Thomas B. Moeslund,et al.  A Survey of Computer Vision-Based Human Motion Capture , 2001, Comput. Vis. Image Underst..

[28]  P J Hunter,et al.  An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool , 2005, Biomechanics and modeling in mechanobiology.

[29]  Thomas W. Calvert,et al.  Goal-directed, dynamic animation of human walking , 1989, SIGGRAPH.

[30]  Daniel Thalmann,et al.  A subject-specific software solution for the modeling and the visualization of muscles deformations , 2009, The Visual Computer.

[31]  Richard R Neptune,et al.  Biomechanics and muscle coordination of human walking. Part I: introduction to concepts, power transfer, dynamics and simulations. , 2002, Gait & posture.

[32]  Kumar Mithraratne,et al.  Anatomically-based musculoskeletal modeling: prediction and validation of muscle deformation during walking , 2009, The Visual Computer.

[33]  S. Delp,et al.  Hamstrings and psoas lengths during normal and crouch gait: Implications for muscle‐tendon surgery , 1996, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[34]  S. Delp,et al.  Evaluation of a Deformable Musculoskeletal Model for Estimating Muscle–Tendon Lengths During Crouch Gait , 2001, Annals of Biomedical Engineering.

[35]  Jon G. Rokne,et al.  Modeling and simulating the deformation of human skeletal muscle based on anatomy and physiology , 2005, Comput. Animat. Virtual Worlds.

[36]  Li Zuo,et al.  Anatomical Human Musculature Modeling for Real-time Deformation , 2003, WSCG.

[37]  Ugur Güdükbay,et al.  Realistic Rendering and Animation of a Multi-Layered Human Body Model , 2006, Tenth International Conference on Information Visualisation (IV'06).

[38]  E. Fiume,et al.  A Survey of Modeling and Simulation of Skeletal Muscle , 2010 .

[39]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[40]  Daniel Thalmann,et al.  Interactive Shape Design Using Metaballs and Splines , 1995 .

[41]  S L Delp,et al.  A graphics-based software system to develop and analyze models of musculoskeletal structures. , 1995, Computers in biology and medicine.

[42]  J. P. Paul,et al.  Paper 8: Forces Transmitted by Joints in the Human Body: , 1966 .

[43]  M G Pandy,et al.  Integrating modelling and experiments to assess dynamic musculoskeletal function in humans , 2006, Experimental physiology.

[44]  Min Chen,et al.  Constrained illustrative volume deformation , 2010, Comput. Graph..

[45]  M. Bobbert,et al.  Length and moment arm of human leg muscles as a function of knee and hip-joint angles , 2004, European Journal of Applied Physiology and Occupational Physiology.

[46]  M. P. Murray Gait as a total pattern of movement. , 1967, American journal of physical medicine.

[47]  Daniel Vélez Día,et al.  Biomechanics and Motor Control of Human Movement , 2013 .

[48]  Arie E. Kaufman,et al.  Real‐time Biomechanically‐based Muscle Volume Deformation using FEM , 1998, Comput. Graph. Forum.

[49]  Wayne E. Carlson,et al.  Anatomy-based modeling of the human musculature , 1997, SIGGRAPH.

[50]  Fuqian Shi,et al.  Survey: Parameterized 3D human body modeling and geometric deformation technology , 2009, 2009 IEEE 10th International Conference on Computer-Aided Industrial Design & Conceptual Design.

[51]  Dmitry B. Goldgof,et al.  Finite element modeling of facial deformation in videos for computing strain pattern , 2008, 2008 19th International Conference on Pattern Recognition.

[52]  Edward L. Wilson,et al.  Numerical methods in finite element analysis , 1976 .

[53]  M. Whittle Gait analysis: an introduction - 3rd edition , 2003 .

[54]  Francisco J. Serón,et al.  FINITE-ELEMENT METHOD FOR ELASTIC WAVE PROPAGATION , 1990 .

[55]  David Zeltzer,et al.  Pump it up: computer animation of a biomechanically based model of muscle using the finite element method , 1992, SIGGRAPH.